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buildings, and a comparison on the relative 
importance of selecting various structural 
materials and structural systems for a tall 
building is needed. The intended audience 
of this public study is the community of tall 
building experts involved in the ownership, 
development, design, planning, construction, 
operation, maintenance, and research of 
tall buildings. The study was commissioned 
and sponsored by ArcelorMittal, the world’s 
largest steel producer.

Scope Definition of This Study
The scope of this study is to inform the 
comparative assertions on the environmental 
sustainability of the above-grade structural 
systems for tall buildings, quantifying the 
environmental impact of relative sectors 
in the building industry. The data used 
is consistent with the structural material 
quantities necessary to erect the above-
grade structure of a tall office building, with 
a given shape that is subject to code-
compliant wind and seismic forces. The 
referenced structure is hypothetically located 
in downtown Chicago, United States. 

The functional unit for this study is 
represented by the whole structure of the 
building, corresponding to 246 and 490 
meters in height (60- and 120-story equivalent 
scenarios). The “per net square meter” or 
“per floor” results are not considered in this 
study as the precise take-up of the floor area 
caused by the different structural systems can 
hardly be determined here. The study omits 
the occupancy phase of the building, and it 
is thus not applicable to a specific duration 
of use, as research evidence showed that the 
impact of the structural components during 
a building’s use phase was not measurable, 
and the environmental performance of the 
building is predominantly controlled by other 
aspects of the design (function, curtain wall 
performance, MEP systems, etc). 

Two different impact categories are 
considered for this study: Climate Change 
and Resource Depletion, with GWP and EE 
as their selected indicators.

The system boundaries of the study are 
extended to the whole life of the building 
structure, from the production and 
transportation of materials to the building 
site, through the construction and use 
phase (subsequently excluded from the 
results), the demolition of the building, and 
the recycling potentialities of the various 
components (presented as additional 
information since it is beyond the system 
boundaries set by European Norm 15978 
“Sustainability of construction works – 
Assessment of environmental performance 
of buildings – Calculation method”) 
(European Norm, 15978:2011). 

Life Cycle Inventory Analysis 

Quantities of Materials
The analyzed system is represented by 
the functional unit (i.e., the entire building 
structure) delivered by the construction 
company to the other contractors that will 
transform the structural skeleton for future use 
(interior fit-out, cladding, installation of MEP). 

Inputs to the analyzed system were modeled 
by attributing the material quantities to the 
supply-chain of the construction company, 
represented by the material suppliers and 
the transport companies that deliver the 
materials to the site. With the use phase being 
excluded for the above mentioned reasons, 
the functional unit is then transferred in the 
end-of-life scenario to a demolition company, 
whose “inputs” (energy) and “outputs” 
(emissions and debris) are quantified. 

Production of Materials 
All the above mentioned quantities 
were calculated thanks to the support of 
several industry leaders who voluntarily 
contributed to the research by modeling 
specific structural scenarios. Inputs to the 
construction process, represented by the 
quantities of materials needed to construct 
the functional unit of this study, were 
calculated by some of the world’s leading 
engineering firms on the basis of a design 
brief prepared by the CTBUH.

During a dedicated two-year-long research 

effort, the CTBUH analyzed all life phases of a 

tall building’s structural system: the extraction 

and production of its materials, transportation 

to the site, construction operations, final 

demolition of the building, and the end-of-life 

of the materials. The impact of the building 

structure during the operational phase 

(i.e., impact on daily energy consumption, 

maintenance, and suitability to changes) was 

also investigated, but no significant impacts 

were identified during this phase.

Introduction

Goal Definition of This Study 
The intended application of this study is 
to inform the community of professionals 
and researchers specializing in tall buildings 
on the environmental performance of 
the most common structural systems by 
providing the most accurate, up-to-date 
analysis on two key impact categories: 
Global Warming Potential (GWP) and 
Embodied Energy (EE). The limitations 
of this study are represented by the fact 
that only two impact categories (GWP 
and EE) are considered here, while other 
impact categories may lead to different 
results. Similarly, the obtained results are 
influenced by the quality of the information 
used, both in terms of environmental data 
(i.e., the “quality” and representativeness 
of the environmental data contained in 
the international databases used in the 
study) and data completeness (for example, 
environmental data on the end-of life of tall 
buildings simply doesn’t exist, and had to 
be collected specifically for this research). 
The studied scenarios are representative of 
the most common structural systems for 
buildings of this height. 

The main reason to conduct this study 
is that there is a lack of reliable and 
comprehensive information on the 
relevance of the construction phase for 
the environmental sustainability of tall 
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Top: Description of the 16 scenarios considered by the research. 
Source: CTBUH

Eight different configurations for the vertical 
structure were identified for the 60-story 
tower, and eight for the 120-story variation. 
A total of 16 scenarios were thus identified, 
with each scenario submitted to two design 
firms, so as to obtain 32 “bills of materials” 
that represent the basis of information for 
the subsequent phases of this research. The 
resulting quantities were integrated with 
data on the horizontal structural elements 
(i.e., floor beams, floor slabs, etc.) obtained 
from a comparison with buildings of the 
same size, function, and scale to those 
considered for the research.

This phase regards the A1–A3 steps as 
described by the European Norm (EN) 15978 
The results of this section, directly derived 
from participating engineering firms, are 
presented in Table 1.

Construction Process and Transportation 
Phase
The transportation phase was modeled on 
the basis of the real material transportation 
distances for the construction of a tall office 
building completed in 2009 in Downtown 
Chicago, for which the engineering 
firm responsible for the comparative 

real building was able to provide a 
comprehensive set of information.

Data for the on-site operations was 
calculated by contacting the suppliers of the 
largest machines operating on the building 
site during the erection of the structures 
(cranes and concrete pumps) to receive 
information on their energy consumption. 
This phase regards the A4–A5 steps as 
described by EN15978.

End of Life
The end-of-life quantities were obtained 
by consulting with three large demolition 
contractors operating at the international 
scale. Only the 60-story scenario was used in 
this circumstance as the demolition of such 
a building would still significantly exceed 
any previously demolished tall building. The 
same documentation that was provided 
to the engineering firms for the creation 
of the “bills of materials” was provided to 
the demolition firms in order to gather 
information on how a demolition project on 
this scale would be handled, which kind of 
machinery would be involved, and how long 
the demolition job would take.
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Short 
Description

Scenario 
Number

10ksi
Concrete

[t]

9ksi 
Concrete 

[t]

8ksi 
Concrete 

[t]

6ksi 
Concrete 

[t]

4-5ksi 
Concrete 

[t]

Steel 
Rebar

[t]

Welded
Wire

Frame
[t]

Steel 
Studs

[t]

Metal 
Decking 

[t]

Steel 
Beams 

[t]

Steel 
Columns 

[t]

Steel 
Trusses 

[t]

Fireproofing 
Spray 

[t]

Normal Steel 
+ Concrete Core 

1a_SF01  11.944  -    12,857  6,077  28,424  1,388  260  25  1,212  4,011  1,971  186  1,651 

1a_SF02  -    -    7,608  12,036  28,424  957  260  25  1,212  3,949  1,614  333  1,651 

High Strength 
+ Concrete Core

1b_SF01  11.944  -    12,857  6,077  28,424  1,388  260  25  1,212  4,011  1,840  186  1,651 

1b_SF02  -    -    7,608  12,036  28,424  957  260  25  1,212  3,949  1,307  333  1,651 

Concrete Core and 
Composite Frame

1c_SF01  13.032  -    13,844  8,218  28,424  1,554  260  25  1,212  4,011  786  186  1,600 

1c_SF02  -    -    8,758  13,761  28,424  1,122  260  25  1,212  3,949  667  333  1,600 

All Concrete Wide 
and Shallow Beams

2a_SF01  24.150  -    13,340  6,900  80,803  3,332  260  -    -    -    -    -    -   

2a_SF02  5.962  -    31,464  8,280  80,803  7,481  260  -    -    -    -    -    -   

All Concrete 
Narrow and Deep 

Beams

2b_SF01  24.150  -    13,340  6,900  58,939  3,281  260  -    -    -    -    -    -   

2b_SF01  33.782  -    6,955  5,631  58,939  6,309  260  -    -    -    -    -    -   

All Steel Diagrid 
Normal Steel

3a_SF01  -    -    -    -    28,424  548  260  25  1,212  4,862  5,850  1,800  1,742 

3a_SF02  -    -    -    -    28,424  548  260  25  1,212  4,156  2,050  4,970  1,742 

All Steel Diagrid 
HS Steel

3b_SF01  -    -    -    -    28,424  548  260  25  1,212  4,756  4,250  1,700  1,742 

3b_SF02  -    -    -    -    28,424  548  260  25  1,212  4,051  1,640  4,900  1,742 

Composite Diagrid 
3c_SF01  -    -    -    13,617  28,424  778  260  25  1,212  4,848  3,050  1,900  1.600 

3c_SF02  6.049  -    5,221  3,243  28,424  1,188  260  25  1,212  4,236  610  1,490  1.600 

Normal Steel 
+ Concrete Core 

4a_SF01  76.864  -    23,242  64,209  83,543  7,424  764  75  3,563  11,861  25,923  2,641  4,844 

4a_SF02  144,744  -    29,938  -    83,543  10,683  764  75  3,563  11,608  19,369  5,125  4,844 

High Strength 
+ Concrete Core

4b_SF01  76,864  -    23,242  64,209  83,543  7,424  764  75  3,563  11,861  25,923  2,641  4,844 

4b_SF02  144,744  -    29,938  -    83,543  10,683  764  75  3,563  11,608  16,420  5,125  4,844 

Concrete Core and 
Composite Frame

4c_SF01  85,130  -    32,563  81,793  83,543  8,028  764  75  3,563  11,861  5,526  2,641  4,702 

4c_SF02  179,399  -    38,511  -    83,543  10,560  764  75  3,563  11,608  3,538  4,990  4,702 

All Concrete Wide 
and Shallow Beams

5a_SF01  104,871  -    65,368  40,242  237,496  17,064  764  -    -    -    -    -    -   

5a_SF02  139,518  -    82,184  49,981  237,496  20,399  764  -    -    -    -    -    -   

All Concrete,  
Narrow and Deep 

Beams

5b_SF01  104,871  -    65,368  40,242  173,232  16,915  764  -    -    -    -    -    -   

5b_SF02  139,518  -    82,184  49,981  173,232  21,330  764  -    -    -    -    -    -   

All Steel Diagrid 
Normal Steel

6a_SF01  -    -    -    -    83,543  1,611  764  75  3,563  18,062  14,850  54,900  5,284 

6a_SF02  116,667  71,029  41,765  -    83,543  9,991  764  75  3,563  11,147  784  29,719  5,166 

All Steel Diagrid 
HS Steel

6b_SF01  -    -    -    -    83,543  1,611  764  75  3,563  18,062  11,700  54,900  5,284 

6b_SF02  116,667  71,029  41,765  -    83,543  9,991  764  75  3,563  11,147  784  29,719  5,166 

Composite Diagrid 
6c_SF01  56,925  -    31,050  37,261  83,543  7,911  764  75  3,563  18,062  -    8,550  4,702 

6c_SF02  55,306  24,724  17,281  32,799  83,543  5,620  764  75  3,563  10,952  648  21,138  4,702 

Considerations on the Characterization 
Factors for Concrete
Concrete is a material whose mix changes 
according to a broad range of variables. 
Compressive strength is usually the main 
parameter being considered, but other 
factors influence the final mix design of 
the product, such as the workability, the 
required strength gain over time, etc. Also, 
other external factors not dependent on 
design decisions can have an impact on 
the mix design, such as the distance from 
the mixing plant, the external temperature 
when concrete is poured, etc. For this 
reason, it is very difficult to identify a 
unique characterization factor for concrete. 
Consequently, the research used two 
different sets of values for each concrete 
grade. One is based on the data released 

monitoring their impacts on the Global 
Warming Potential (GWP) and Embodied 
Energy (EE) indicators.

Table 2 presents the characterization factor 
(environmental properties, in this case 
Kilograms of CO

2
 equivalent per kilogram of 

material, and Mega Joules per kilogram of 
material) for each elementary flow (material, 
operation, input, etc.) of the process, that is: 
it expresses how much that flow contributes 
to the impact category indicator being 
considered (GWP and EE). Most of these 
characterization factors are derived from 
the Ecoinvent database, while some have 
been calculated by CTBUH on the basis of 
the information provided by the firms and 
companies supporting the research.

The responses of the consulted demolition 
contractors informed the creation of an end-
of-life scenario for the various scenarios of 
the building structures.

The demolition materials are considered 
to be hauled to the closest scrapyard and 
concrete recycling plant to the building site.

This phase regards the C1–C4 steps as 
described by EN 15978.

Life Cycle Impact Assessment – Results

Classification and Characterization 
The environment effects caused by each 
material or operation accounted for in the 
life cycle inventory is assessed against the 
two selected impact categories (Climate 
Change and Resource Depletion) by 

Table 1: Inventory of Materials. Source: CTBUH
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by the Syndicat National du Beton Pret a 
l’Emploi, and a second set is calculated on 
the basis of over 1,500 EPDs (Environmental 
Product Declarations) issued by concrete 
producers in the San Francisco area. 
As can be seen in Table 2, where both 
characterization factors are presented, 
the specific concrete mixes, but also the 
contour factors (mix of energy used at the 
plant, chemical composition of the raw 
materials, modernity of the production 
infrastructure, etc.) can have a significant 
impact on the environmental performance 
of concrete. 

Results 
The key research results are summarized 
in Graphs 1–4, which represent the Global 
Warming Potential and Embodied Energy 

results of all 16 scenarios being considered. 
Each scenario has been studied by two 
different engineering firms, which provided 
an inventory of materials. The 32 resulting 
inventories were multiplied for the two 
different sets of characterization factors, so as 
to reflect the variable environmental impacts 
of concrete. Graphs 1–4 represent the entire 
life cycle (A1–C3) as described by EN 15978, 
which corresponds to the whole construction 
phase, from the extraction of raw materials to 
the installation on the building.

It should be noted that the results of the 
6a and 6b scenarios, which were supposed 
to correspond to the “all-steel diagrid 
scenario”, present two very different results 
from one engineering firm to the other. 
Both firms agree that the building has an 

unusual shape for this structural system. 
Consequently, one firm decided to add a 
concrete core to help the external diagrid 
withstand the horizontal forces acting on 
the building. The other firm over-designed 
the steel diagrid to maintain the “all-steel” 
idea, thus leading to the use of an unusual 
amount of structural steel. 

Life Cycle Impact Assessment – Additional 
Information Beyond the System Boundary
The European Norm 15978 prescribes that 
the system boundaries of a building LCA must 
be limited to the disposal of the demolition 
debris. However, it cannot be denied that 
most materials have a residual value even 
after the demolition of the building. 

“The environment effects caused by each material or operation accounted for in the life 
cycle inventory is assessed against the two selected impact categories (Climate Change 
and Resource Depletion) by monitoring their impacts on the Global Warming Potential 
(GWP) and Embodied Energy (EE) indicators.“

Values Per Kg GWP 
[Kg CO

2
 Eq./kg]

Embodied Energy 
[MJ/kg]

Concrete 

9-10ksi Concrete C70 [kg] 0.16 (0.24) 1.23 (1.60)

8ksi Concrete C55 [kg] 0.17 (0.20) 1.25 (1.49)

6ksi Concrete C40 [kg] 0.15 (0.17) 1.12 (1.28)

4-5ksi Concrete C30/37 [kg] 0.11 (0.15) 0.83 (1.22)

Structural Steel Components

Steel Plates [kg] 2.46 26.07

Steel Beams [kg]  1.21  15.36 

Steel Columns [kg]  1.14  14.80 

Steel Trusses [kg]  1.14  14.80 

Reinforcing Steel Components

Steel Rebar [kg]  1.24  16.42 

Welded Wire Frame [kg]  1.24  16.42 

Other Components

Steel Studs [kg] 2.16  23.71 

Metal Decking [kg]  2.56  28.22 

Fireproofing Spray [kg]  0.26  4.37 

Credit for Scrap -1.51 -13.40

Energy Carriers

Diesel  0.61  53.24 

Electricity  0.19  2.97 

Table 2: Characterization factors used for this research. Source: CTBUH
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Graph 1: LCA results of the 60-story equivalent scenario for global warming potential. Source: CTBUH

Graph 2: LCA results of the 60-story equivalent scenario for embodied energy. Source: CTBUH
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Graph 3: LCA results of the 120-story equivalent scenario for global warming potential. The structural solution for scenarios 6a and 6b (steel diagrid) proved to be unsuitable for a 120-meter tower . Source: CTBUH

Graph 4: LCA results of the 120-story equivalent scenario for embodied energy. The structural solution for scenarios 6a and 6b (steel diagrid) proved to be unsuitable for a 120-meter tower . Source: CTBUH
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In this standard, a Module D which takes into 
account the Benefits and loads beyond the 
system boundary has been introduced.

Metals, for example, are almost entirely 
recycled for the production of new products 
that will have the same properties of the 
original materials (thus resulting in no 
downcycling). Consequently, after a building 
is dismantled, all of the metal parts are 
sorted from the demolition waste and sent 
to a scrapyard for recycling. A “credit” can 
be obtained for the steel parts forming the 
structure of a building. These include steel 
sections, rebar, steel decks, and so on. Some 
of the scenarios considered by this research 
produce such a high quantity of steel scrap 
that this “credit” is capable of offsetting the 
environmental “burden” caused by directing 
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the remaining demolition waste (mainly 
concrete) to a landfill.

The high recycling potential is an intrinsic 
value of steel and metals in general, and this 
“credit” should be communicated as part of 
the additional information necessary to make 
an informed decision on the environmental 
properties of the various design solutions 
assessed by this research (ATHENA 2002)
(WorldSteel Association 2011)(American Iron 
and Steel Institute 2013).  The impact of the 
Module D is evident when the credit for scrap 
is included as in Graphs 5–8.

Findings
General Findings

1. After completing this 24-month-
long research exercise, the 

researchers agree that lifecycle 
assessment as a discipline is 
still very sensitive, where small 
decisions can have a significant 
impact on the final results. 
Consequently, the research results 
are applicable only to the specific 
case studies considered here, with 
the system boundaries and all the 
other conditions and limitations that 
are valid for this research, and they 
cannot be used to give conclusive 
results on the sustainability of 
different structural systems or 
structural materials in general.

2. The role of the building design 
team, consultants, and material 
supplier is fundamental to 
achieving a highly optimized 

Graph 5: Results beyond the system boundaries as allowed by EN 15978. Source: CTBUH
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Graph 6: Results beyond the system boundaries as allowed by EN 15978. Source: CTBUH

Graph 7: Results beyond the system boundaries as allowed by EN 15978. The structural solution for scenarios 6a and 6b (steel diagrid) proved to be unsuitable for a 120-meter tower. Source: CTBUH
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structural system for a specific tall 
building. Also in this case, small 
decisions can have a major impact 
on the quantities of structural 
materials being used; their 
origin and functional properties 
have a big impact on the final 
environmental results.

3. The impact categories and the 
indicators used (GWP and EE) 
are only two of the many ways 
that human actions affect the 
environment. Other dimensions 
can be considered when assessing 
the sustainability of buildings and 
building materials, such as the 
depletion of natural resources or 
the amount of material waste at the 
end of a building’s life.

Specific Findings of the Research
1. After reviewing the results of the 

LCA analysis within the system 
boundaries of the EN 15978 (thus 
without considering the credit for 
scrap), the conclusions cannot be 
generalized for the two types of 
buildings. For the 60-story scenario, 
it can be pointed out that all 

concrete scenarios perform worse 
(as an average) than the other 
scenarios in terms of GWP while 
all steel scenarios are those with 
the highest EE. For the 120-story 
scenario, the discrepancies between 
the solutions are smaller with 
composite diagrid resulting the best 
solution from a GWP standpoint 
while all concrete scenarios have the 
lowest average EE. 

2. All scenarios might additionally 
benefit from the recyclability of the 
steel at the end of the building life 
cycle (steel sections and steel rebar). 
The EN 15978 imposed to be outside 
the system boundaries to have the 
possibility to account for the benefit 
of recycling steel scrap from the 
LCA results. Module D represents 
important additional information 
for the environmental accounting 
of various options, as seen in Table 3  
and Graphs 5–8 (ATHENA 2002). 
 
Taking into account the recycling 
of material at the end of life 
clarifies the results. For the 60-story 
scenario, concrete solutions are 

those with the highest GWP 
and EE of all combinations, with 
mixed solutions (i.e., concrete core 
and steel or composite frame) 
resulting those with the lowest 
environmental impacts. Composite 
diagrid, on the contrary, result the 
best solutions for the 120-story 
building scenarios. 

3. Transportation of construction 
materials and demolition waste 
is not a very significant factor in a 
building LCA, with values typically 
ranging between 1–2.5% in terms 
of GWP and 0.9–3.2% in terms 
of EE. Consequently, if materials 
with better environmental 
performance are available, they 
can be transported across greater 
distances without a significant 
impact on the overall sustainability 
of the building structure. 

4. Horizontal structures (beams, floor 
slabs, etc.) represent 50–80% of 
the building weight on the shorter 
60-story scenarios, while they 
represent 30–60% of the building 
weight in the taller 120-story 
scenarios. This ratio, and the 
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Graph 8: Results beyond the system boundaries as allowed by EN 15978. The structural solution for scenarios 6a and 6b (steel diagrid) proved to be unsuitable for a 120-meter tower. Source: CTBUH
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“Other dimensions can be considered when assessing the sustainability of buildings and 
building materials, such as the depletion of natural resources or the amount of material 
waste at the end of a building’s life.“

Short 
Description

Scenario 
Number

Building 
Height
[story]

GWP 
[kg CO

2
 Eq./m2]

EE 
[GJ/m2]

Normal Steel + 
Concrete Core 1a 60  222  2,4 

High Strength + 
Concrete Core 1b 60  219  2,4 

Concrete Core and 
Composite Frame 1c 60  216  2,3 

All Concrete Wide 
and Shallow Beams 2a 60  241  2,2 

All Concrete Narrow 
and Deep Beams 2b 60  209  2,0 

All Steel Diagrid 
Normal Steel 3a 60  243  3,0 

All Steel Diagrid HS 
Steel 3b 60  226  2,7 

Composite Diagrid 3c
60  228  2,6 

Normal Steel + 
Concrete Core 4a 120  361  4,1 

High Strength + 
Concrete Core 4b 120  357  4,0 

Concrete Core and 
Composite Frame 4c 120  308  3,3 

All Concrete Wide 
and Shallow Beams 5a 120  300  2,8 

All Concrete Carrow 
and Deep Beams 5b 120  277  2,6 

All Steel Diagrid 
Normal Steel 6a 120 431 5,2

All Steel Diagrid HS 
Steel 6b 120  423  5,1 

Composite Diagrid 
6c 120  292  3,3 

consequent environmental impacts, 
can be reduced if shorter structural 
spans are used (the studied 
scenarios had 13.5 meters of 
unobstructed lease span) or lighter 
flooring systems are adopted.

5. Significant environmental benefits 
can be obtained by choosing the 
proper material provider. A special 
set of characterization factors was 
used to run “environmentally-
optimized” scenarios. In this set 
of environmental data, the best 
environmental properties of each 
material were used. Most of the 
steel products (steel profiles ASTM 
A913, rebar, etc.), for instance, 
can be purchased from electric 
arc furnaces, which use recycled 
steel scrap as their predominant 
material input. The environmental 
properties of such products are 
extremely beneficial, and the results 
of building structures designed 
with these materials have a GWP 
and EE significantly lower than 
the original structures designed 
with the average environmental 
values provided by WorldSteel, as Table 3: Credit from scrap: environmental benefits that can be obtained by recycling the materials. 

Supplementary information beyond the system boundaries. Source: CTBUH
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seen in Table 4 and Graphs 9–12 
(WorldSteel Association 2011)
(Hammond & Jones 2011).

6. Special design mixes of concrete 
can also be used to improve 
the environmental properties of 
structures. A significant percentage 
of cement in the mix can be 
substituted with other components 
such as fly ash, furnace slag, or 
silica fume, significantly decreasing 
the GWP and EE of the resulting 
concrete. However, concretes with 
cement substitutes have different 
behavioral properties than the 
corresponding “normal” concretes, 
such as longer curing times, 
possibly increased fragility, etc. As 
a result, these alternatives were not 
considered in the present research, 
despite the fact that they are being 
used in tall building construction 
when special characteristics are 
required (e.g., in hot climates, fly 
ash is used to reduce the heat of 
hydration when large quantities of 
concrete are poured) (Bentz et. al. 
2013)(Fantilli & Chiaia 2012).

Comparison With Literature Results

A small number LCA studies of tall buildings 
have been found in published literature, 
some authored by members of this research 
team. In order to perform a comparison 
with their findings, the results of the A1–A5 
phase of this research have been divided by 
the gross floor area of the studied scenarios 
(141,600 square meters and 446,250 square 
meters for the short and tall scenarios 
respectively). A comparison table with the 
literature sources is offered in Table 5.

Only a few prior studies consider buildings 
of similar heights. In some circumstances, 
the results of these studies evidence GWP 
and EE values significantly lower than those 
found in the literature case studies, but the 
following explanation can be provided to 
justify the discrepancies.

Characterization Factor Source: French Concrete Environmentally Optimized 
Scenario

LCA Phase: Entire Life Cycle 
(Modules A1-C3)

Entire Life Cycle 
(Modules A1-C3)

Short 
Description

Scenario 
Number

GWP 
[t CO

2
 Eq.]

EE
[GJ]

GWP 
[t CO

2
 Eq.]

EE 
[GJ]

Normal Steel + 
Concrete Core 

1a_SF01 22,057 244,424 -30% -20%

1a_SF02 19,194 216,702 -32% -20%

High Strength + 
Concrete Core

1b_SF01 21,902 242,404 -30% -20%

1b_SF02 18,831 211,972 -30% -20%

Concrete Core and 
Composite Frame

1c_SF01 21.564 235,764 -28% -19%

1c_SF02 18,766 209,916 -30% -19%

All Concrete Wide 
and Shallow Beams

2a_SF01 21,592 207,121 -13% -13%

2a_SF02 27,298 279,177 -23% -21%

All Concrete Narrow 
and Deep Beams

2b_SF01 18,988 185,091 -15% -15%

2b_SF01 23,147 238,914 -23% -21%

All Steel Diagrid 
Normal Steel

3a_SF01 23,542 289,123 -44% -25%

3a_SF02 21,812 266,519 -43% -25%

All Steel Diagrid HS 
Steel

3b_SF01 21,399 261,258 -43% -24%

3b_SF02 21,115 257,472 -43% -24%

Composite Diagrid 
3c_SF01 22,751 270,043 -38% -23%

3c_SF02 19,453 225,903 -34% -21%

Normal Steel + 
Concrete Core 

4a_SF01 108,010 1,219,233 -35% -22%

4a_SF02 109,405 1,227,723 -34% -23%

High Strength + 
Concrete Core

4b_SF01 108,010 1,219,233 -35% -22%

4b_SF02 105,912 1,182,238 -33% -22%

Concrete Core and 
Composite Frame

4c_SF01 90,417 961,564 -27% -19%

4c_SF02 97,642 1,039,256 -27% -19%

All Concrete Wide 
and Shallow Beams

5a_SF01 87,190 847,854 -16% -16%

5a_SF02 101,714 988,060 -17% -16%

All Concrete,  
Narrow and Deep 

Beams

5b_SF01 79,525 782,172 -18% -17%

5b_SF02 95,435 940,617 -18% -18%

All Steel Diagrid 
Normal Steel

6a_SF01 130,250 1,637,140 -50% -28%

6a_SF02 125,222 1,393,478 -32% -22%

All Steel Diagrid HS 
Steel

6b_SF01 126,519 1,588,556 -49% -28%

6b_SF02 125,222 1,393,478 -32% -22%

Composite Diagrid 
6c_SF01 86,208 965,166 -33% -22%

6c_SF02 90,375 1,017,568 -34% -22%

Table 4: Results of the environmentally optimized scenarios within the System boundaries as described by EN 15978. Source: CTBUH
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Graph 9: Results of the “environmentally optimized” 60-story scenarios for global warming potential, obtained by using the lowest characterization factors found in the literature for each steel product. Source: CTBUH

Graph 10: Results of the “Environmentally optimized” 60-story scenarios for embodied energy, obtained by using the lowest characterization factors found in the literature for each steel product. Source: CTBUH
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Graph 11: Results of the “environmentally optimized” 120-story scenarios for global warming potential, obtained by using the lowest characterization factors found in the literature for each steel product. The 
structural solution for scenarios 6a and 6b (steel diagrid) proved to be unsuitable for a 120-meter tower. Source: CTBUH

Graph 12: Results of the “environmentally optimized” 120-story scenarios for embodied energy, obtained by using the lowest characterization factors found in the literature for each steel product. The structural 
solution for scenarios 6a and 6b (steel diagrid) proved to be unsuitable for a 120-meter tower. Source: CTBUH
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inconsistencies are being tackled by LCA 
experts worldwide, some aspects regarding 
the building industry in general and tall-
buildings in particular can be investigated 
in future research activities as a result of the 
observations presented here.

An interesting field of research would be 
on the true profitability of long structural 
spans from a real estate perspective. Is there 
a true market premium for tall buildings with 
very long spans? Are there other aspects 
(e.g., environmental declarations and rating 
systems) that can compensate for the 
presence of more vertical structural elements, 
thus resulting in less materials being used for 
the horizontal beams and slabs?

Another field of research would be an 
investigation on innovative floor systems 
to be adopted in tall buildings that reduce 
the material quantities of the horizontal 
structures (floor beams, floor slabs, etc.).

From a broader perspective, fundamental 
research is needed to investigate the 
end-of-life of tall buildings. This important 
aspect of a building’s life should be carefully 
assessed and planned for. 

materials, thus the characterization factors for 
each material may vary significantly.

The GWP of the 40-story steel diagrid 
considered by Oldfied (Oldfield 2012) is one 
and a half times higher than the 60-story 
diagrid considered in this research, but 
the building has a very iconic shape (30 st. 
Mary Axe, London) that might justify the 
discrepancy. Moreover, the study from Oldfield 
also includes the foundation quantities. The 
paper from Trabucco (Trabucco 2011) on 
the same building has a remarkably different 
result from this research (with a much higher 
difference ratio from the results obtained by 
Oldfield), but an input-output method was 
used to obtain the characterization factors.

The above mentioned discrepancies attest 
to the critical issues related to the LCA 
methodology and the variability of the results 
mentioned in the first and second point of the 
general conclusion.

Ideas for Future Research Activities for the 
Tall Building Industry

Despite the above mentioned limitations 
with the general LCA methodology used 
for this study and its application, whose 

The 60-story case studies of the research 
by Foraboschi (Foraboschi et al. 2014) are 
quite similar to the results of this study, 
and the discrepancy can be justified by a 
different building shape (square floor plan, 
1:7 aspect ratio) and the different source of 
the characterization factors (Hammond & 
Jones 2008).

The 52-story building considered by Treloar 
(Treloar et al. 2001) uses characterization 
factors derived from a fundamentally 
diverse methodology (input-output). Also, 
the structural elements of this building 
represent a remarkable ratio with the 
total embodied energy of the building, 
suggesting an underestimation of the other 
building components (curtain wall, interior 
finishes, MEP, etc.).

The concrete frame of a shorter 40-story 
building considered by Trabucco (Trabucco 
2012) has an EE value that doubles the results 
of this research, but the case study considered 
in that paper (Palazzo Lombardia in Milan) 
has a very peculiar shape. Additionally, 
a hybrid analysis (consisting in another 
different methodology) was used to extract 
the characterization factors of the building 

Source
Assessment 

Method
(see chapter 3)

Structural
System

Total
GWP

[kg CO
2
/m2 GFA]

GWP 
Structural 

Frame
[kg CO

2
/m2 GFA]

Total
EE

[GJ/m2 
GFA]

EE
Structural

Frame
[GJ/m2 GFA]

Building
Height
[story]

 Foraboschi 
et al. 2014

Process
Analysis

Steel Frame 
+ Concrete 

Core

- - - 3.15 40

- - - 3.94 50

- - - 3.77 60

Concrete 
Frame

- - - 2.20 40

- - - 2.57 50

- - - 2.46 60

Kofoworola  
& Gheewala 

2009

Process
Analysis

Steel Frame 
+ Concrete 

Core
- - 6.80 5.30 * 38

Oldfield 
2012

Process
Analysis

Steel Diagrid 955 340 - - 40

Trabucco 
2011

Input/Output Steel Frame - - 23.20 - 40

Trabucco 
2012

Hybrid
Analysis

Concrete 
Frame

- - 15.70 4.23 40

Treloar  et al. 
2001

Input/Output

Concrete 
Core + 

Composite 
Column

- - 18.00 11.70 42

Steel Frame 
+ Concrete 

Core
- - 18.40 11.60 52

* Data not explicitly indicated in the paper, extracted through interpretation.

Table 5: Comparison with literature results. Source: CTBUH
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Eventually, an “end-of-life scenario” should be 
studied when a new building is proposed/
designed so as to engage all interested parties 
(developer, designer, etc.) to make the right 
choices (material selection, construction 
method, use of prefabrication assembly, etc.).
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