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Introduction 
 
Tall buildings prevalent today around the world are a result of increasing research, development 
and innovation in the field of Civil Engineering. They are subjected to not only gravity loads, 
but may also experience significant amounts of lateral loads caused by severe ground 
motions, strong winds and other environmental loading. Efficient structural systems are being 
designed to transfer all of these loads safely to the ground (Ali and Moon, 2007). Since the 
effects of earthquake and wind loads increase with the height of the building, a significant 
consideration of lateral loads is more important for taller structures (Halder and Dutta, 2010). 
Preliminary design of tall buildings is the initial step during the design process. While designing 
tall buildings, conceptual design, preliminary design, preliminary analysis of structure, details 
design, final design and detailing of structures are all conducted to complete the total design 
process (Lützkendorf and Lorenz, 2006). Preliminary building design is defined as the selection 
and proportioning of the most suitable and appropriate structural components such as beams, 
columns, slabs, foundations, and bracing systems (Taranath, 2011). In the initial design stage, the 
known value of some key building design and response parameters are very useful pieces of 
information to select the most appropriate size of structural components.

Preliminary Design of Tall Buildings 
Using an Artificial Neural Network

With the rapid increase in the need for tall buildings to accommodate exponentially growing 
urban populations, quick and reliable estimations of approximate sizes of shear walls and 
columns by knowing typical response parameters and primary structural component indicators 
can greatly facilitate preliminary design and feasibility of the project. This research presents 
the outcome of an Artificial Neural Network based approach to directly determine design 
parameters based on the experience gained from previously designed buildings. Artificial 
Neural Network models are trained to determine structural design indicators from architectural 
parameters. The objective is to provide the means of assisting the design team and clients to 
make key design decisions based on cumulative experience rather than relying on the judgment 
of individual designers. The approach is demonstrated through the sample networks trained on 
about thirty eight tall buildings for which required architectural and structural design results 
have been generated through detailed designs.

Keywords: Artificial Neural Network, Performance-based design, preliminary design, 
tall buildings
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Figure 1. Schematic Diagram of an Artificial Neural Network (ANN) (Source: AIT-Consulting)

Naveed Anwar 
Executive Director 

AIT-Consulting, 
Klong Luang, Thailand 

Dr. Naveed Anwar is the Executive Director of AIT-Consulting 
and also oversees the Asian Center for Engineering 
Computations and Software (ACECOMS) as Director and 
teaches structural engineering at the School of Engineering 
and Technology, both situated at the Asian Institute of 
Technology (AIT). While steering AIT Consulting’s commitment 
to nimble, high-quality solutions, Dr. Naveed is recognized for 
numerous honors and awards for his 30-year contribution to 
the field of structural engineering specifically in areas spanning 
the design and analysis of tall buildings, bridges and special 
structures, computational mechanics and the development of 
software for engineering applications.

Lila Khatiwada 
Masters Student 

Asian Institute of Technology, 
Bangkok, Thailand 

Lila Khatiwada is a Masters Student at Asian Institute of 
Technology (AIT), Thailand.

Thaung Htut Aung 
Deputy Projects Director 

AIT-Consulting, 
Bangkok, Thailand 

Mr. Thaung Htut Aung is Projects Coordinator at AIT 
Consulting, Bangkok, Thailand. He has been involved in various 
structural engineering projects across the globe. He can be 
contacted at AIT-Consulting.

Jose A. Sy 
Chief Executive Officer 

Sy^2 + Associates, Inc., 
Manila, Philippines 

Engineer Jose A. Sy is the President/CEO of Sy + Associates, 
Inc., one of the country’s leading structural engineering design 
firms. He has an experience of 28 years while working as 
structural engineer in various design projects. A visionary in his 
field, his structural design experience includes a wide variety 
of projects such as high rise structures, commercial buildings, 
condominiums, hotels, banks and industrial plant facilities.



470  |  CTBUH 2015  New York Conference

An Artificial Neural Network, Fuzzy Logic, Rich 
Picture Approach, Analytical Hierarchy Process,  
or Hybrid Mixed Approach are some emerging 
techniques and applications of artificial 
intelligence used for preliminary tall building 
design and the optimization of structural 
components and the selection of proper 
structural systems (Adeli, 2001). Proportioning 
structural systems on knowledge-based expert 
systems, which are usually implemented by 
complex computer programs, are trained to 
use a knowledge base to solve real-life 
problems. It is a very useful technique to 
increase accuracy during the preliminary 
design phase (Poon, 2000). 
 
Different branches of artificial intelligence, such 
as knowledge-based expert systems, linear 
optimization, genetic algorithms, and artificial 
neural network tools, can be used for the 
preliminary design of tall buildings (Cohn and 
Dinovitzer, 1994). An Artificial Neural Network is 
an information processing system consisting of 
massively large parallel connections. It is a 
mathematical model designed for input-output 
mapping, which achieves perceptual tasks, 
recognition tasks, and mimics the behaviour of 
the human brain (Al Shamisi, Assi et al., 2011).  
 
An Artificial Neural Network (ANN) with a 
supervised learning has a process that is divided 
into two stages: an ANN model, developed and 
trained to learn the relationships between 
inputs-outputs and adjusting the error by 
modifying the weight of each neuron is the first 
stage, and the second is the use of a network 
model to predict the output for new input data 
(Zhang, Eddy Patuwo et al., 1998). ANN can be 
used in the structural engineering field. Trained 
networks can be used to simulate outputs from 
similar types of new problems. Gershenson 
(2003) suggested that ANN is a very useful tool 
to generalize a complex problem using simple 
linear or nonlinear functions in elementary units 
to arrive at a proper solution. 
 
 
Objectives and Methodology 
 
The overall objective of this paper is to estimate 
basic design and response parameters of tall 
buildings using architectural information in the 
preliminary design stage. The known values of 
design and response results allow engineers to 
confidently choose the appropriate size of 
structural components at the beginning of the 
design process (Group, 2010). The simulated 
output from the network is compared with the 
provided target. Feed Forward Networks are 
commonly used in engineering applications. In 
multilayer neural networks, hidden layers are 
arranged between input and output layers, and 

Figure 2a. Total work break down during development of Artificial Neural Network model with supervised learning 
(Source: AIT-Consulting)

each hidden layer has many neurons (Kavzoglu, 
1999). This system can be seen as a group of 
parallel processing units. Hidden layers and 
output layers received information from neurons 
in the preceding layer through links with 
associated weight. Each neuron performs 
computations to calculate a weighted sum and 
the weighted sum is transferred through a 
transfer function to neurons in the next layer, or 
even a network output if it is an output layer 
(Kalman Šipoš, Sigmund et al., 2013; Hasançebi 
and Dumlupınar, 2013). Figure 1 shows a typical 
multilayer neural network consisting of a 
number of neurons arranged in layers. Each 
neuron is connected with neurons of the 
following layer. Each of the input parameters is 
multiplied by their corresponding weight. The 
product is then added with corresponding 
biases, called a weighted sum. The weighted 
sum is then fed in to an activation function 
which gives the output of one neuron.  
 
For creating a trained network we require an 
existing data set of inputs and outputs. The 
same trained network we designed by using the 
existing data set can be used to simulate 

outputs for new problems of a similar nature. 
Figure 2a explains an overview of the 
methodology adopted to develop this system. 
Data from 40 already designed tall buildings is 
collected using their architectural and structural 
drawings. The extracted data is then divided into 
two categories based on its intended uses i.e. 
training of the ANN system and its subsequent 
testing. The buildings’ dimensions taken from 
architectural drawing were used as input 
variables for the network to simulate the various 
responses and structural design parameters of 
tall buildings. The important fundamental 
response parameters and design 
information of buildings, such as the natural 
period of the building, weight per unit floor 
area of the building, weight per unit volume 
of the tower, the maximum thickness of the 
shear wall, ratio of the total area of core wall 
to the floor area, and the ratio of the 
column area to the floor area at the top 
podium level, were taken from results of 
structural designs from code based design 
processes for the training of eight different 
ANN models. Figure 2b enlists all input and 
output parameters as well as corresponding 



CTBUH 2015  New York Conference  |  471

ANN models for each output prediction.  
 
Models were trained for the mapping of key 
design and response parameters directly 
from architectural drawings. Rescaling raw 
numerical data to specific boundaries of the 
largest and smallest ranges was done using 
Z-score data normalization (Sola and Sevilla, 
1997). Figure 3 shows full 3D finite element 
models for some of the case study 
buildings, created and analysed to extract 
actual design outputs. 
 
 
Data Processing 
 
In an ANN black box model with supervised 
learning, input and target data were fed into 
input and output layers respectively (Adeli, 
2001). The network architecture depends 
upon the nature of input and output data 
sets. MATLAB version 7.14 was used because 
it provides a convenient programming 
environment and has various built-in 
functions helping the user to automate the 
process (Al Shamisi, Assi et al., 2011). The data 

collected from architectural drawings and 
structural designs from the code based 
design process of 38 buildings were used as 
inputs and targets for each network. The 
input data was taken from architectural 
drawings and the target data was taken from 
structural design results. Fourteen input 
variables and single target variables were 
chosen and trained for each network. 
Controlling parameters defined during the 
network building and training were: data 
normalization, number of hidden of layers, 
number of nodes in hidden layers, transfer 
functions, mu for L-M algorithm, number 
epochs, data size partitioning into training, 
validation and testing sets, minimum 
gradient of the performance function, and 
the maximum validation check. Details of all 
these parameters can be seen in Adeli (2001).  
 
The number of hidden layers and nodes in each 
hidden layer depends upon the nature of data 
sets and the transfer function, learning 
parameter, number of iterations, transfer 
functions, and the characteristics of the data 
used (Kavzoglu, 1999). Large numbers of hidden 

nodes are able to capture better results than 
fewer hidden nodes. Similarly, large numbers of 
hidden nodes and hidden layers, although time 
consuming to train, tend to produce good 
results during training and validation. However, 
large errors may occur during testing new data 
sets due to over-fitting (Rotich, 2014). Network 
performance was checked with different 
numbers of hidden nodes and different 
numbers of hidden layers, and such 
performance did not follow any particular 
pattern. Different networks with changing 
nodes in hidden layers were trained (Nagendra 
and Khare, 2006) and the best network was 
selected with the least mean square error in 
training and testing sets.  
 
Nguyen and Widrow’s weight initialization 
algorithm was used in the MATLAB 
programming environment during the 
initialization of the initial weight. The 
training process was stopped when the 
error approached zero or as specified in the 
stopping criteria of the network. The trained 
neural network model uses the weights 
which were saved during the stopping of 
the training process. In a L-M algorithm, 
there is a better convergence capacity and 
less of an effect from local minima because 
of the high converging capacity at the 
beginning of training (Dai, 2013). The 
nonlinearity of the input-output was 
defined by introducing a transfer function in 
hidden nodes. Generally, hidden layers use 
nonlinear activation functions, and output 
layers use pure linear activation functions.  
 
When the trained network reached the 
minimum error it was tested with new data 
set. The simulated outputs of networks were 
compared with the actual values obtained 
from structural design results. If the error was 
reduced to a significant range then the 
model was saved. Network results were used 
for the preliminary design of tall buildings so 
the best network would be able to simulate 
the output for new tall buildings. During the 
training process, training data was divided 
into training, testing, and validation sets. The 
convergence criteria was measured by 
determining statistical properties i.e. the MSE 
between the simulated and actual results 
from the structural design, which were 
compared and reported for each model. 
 
 
Improvement of the Generalization 
Capability of the Network 
 
The networks fit well with training data sets, but 
the prediction capability of networks to the test 
data set may be poor due to over fitting or over 
training of the network. As suggested by Calin 

Figure 2b. Input and target variables for  artificial neural network model construction (Source: AIT-Consulting)
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and Dumitru et al. (2002) an early stopping 
approach was used to overcome overtraining 
and to generalize the network. The first subset 
is the training set, used for computing the 
gradient and updating the network weights 
and biases. The second subset is the validation 
set (Prechelt, 1998). The error on validation 
sets is monitored during training processes. 
The validation error normally decreases in 
initial phases of training as the training set 
error. The data division during model 
construction into training, validation and 
testing sets were randomly kept with the 
ratios of 70%, 15% and 15% respectively. The 
valid networks have to correlate well with 
training, testing, and validation sets, and with 
the least MSE value of simulated and actual 
output for training and test data sets. 
 
The performance of networks with different 
buildings were evaluated in terms of the 
mean square error between the actual 
output and the target of the data set. Errors 
could be expressed in terms of other 
statistical measures, such as the mean square 
error, sum square error, the root of the mean 
square error, mean absolute error, and the 
correlation coefficient between the actual 
and simulated value. The mean square error 
of the target and ANN-model output of 
different architecture networks, including 
one layer, two layers and three layers with 
different numbers of hidden nodes, were 
compared to evaluate the performance of 
the network. MSE is very popular for signal 
processing because of the simplicity to 
calculate it and they require less computing 
memory. The least value of the mean square 
error for training and testing sets shows the 
actual performance of the network. The 
correlation coefficient of actual and 
simulated values for training and testing sets 
shows the performance of the network. 
Some networks performed very well but 
others did not. The best network was chosen 
with the least MSE and the highest 
correlation to the training, testing and 
validation set. The networks were then used 
to simulate design and response parameters 
for the preliminary design purposes of tall 
buildings and the results are shown in the 
subsequent section.

Analysis Results and Discussion 
 
Developed neural network models were 
employed to simulate the key design 
and response parameters of tall buildings 
directly from architectural parameters. Input 
parameters for the models of new buildings 
can be taken from architectural drawings. 

The output of the network was expected to 
be the most accurately simulated output, 
similar to the structural design values found 
through code based and performance 
based design. The networks for different 
targets can be used for new buildings. In 
the initial design stage, structural engineers 
can find the required data for inputs and 
simulate outputs from trained networks. 
The performance and simulated outputs 
from eight different networks will be shown 
separately in this section. 
 
Model I: Model Assessment for the Natural 
Period of the Building (seconds) 
 
The most appropriate artificial neural network 
model among several architecture networks 
and learning algorithms were chosen based 
on their MSE and the actual natural period by 
structural design procedures and simulated 
outputs by the networks. The network with a 
minimum MSE in training sets and test sets was 
selected as the best network among several 
models. For Model I, network architecture 
14:20:1 with an L-M learning algorithm shows 
the least MSE in training and test data sets 
among different architecture networks. The 
performance of the 14-20-1 network for the test 
building is shown in Figure 4.1. From Figure 4.9, 
it is clear that Model I is sensitive to the vertical 
dimension of the building. With increases in 
the vertical dimensions of buildings, the natural 
period of the test buildings simulated by Model 
I was also increased. 

Model II: Model Assessment for the Ratio of 
Column Area by Floor Area at the Top of the 
Podium Level 
 
The network was trained with the architectural 
parameters of buildings as input variables. 
A ratio of column to floor area, and the area 
at the top of the tower podium level of tall 
buildings were used as a target variable. The 
top of the podium in tall buildings is one of 
the critical sections during design because 
most of the shear stress concentrates at that 
section. The most appropriate artificial neural 
network model among several architecture 
networks and learning algorithms were 
chosen based on its mean square error 
between the target value and output during 
the training process. For network Model II, a 
network architecture of (14:15:15:1) with a 
L-M learning algorithm shows the least mean 
square error in the testing data sets. Figure 
4.2 shows that the ratio of column area to 
the floor area at the top of the podium level 
from code based design procedures and the 
simulated results from the artificial neural 
network Model II were very close to each other. 
This demonstrates that the model can follow 
the pattern of code based design procedures. 
Figure 4.10 shows that the sensitivity of network 
models with changing vertical building 
dimensions keeps all others constant.

 

Figure 3. Full 3D nonlinear models of some of the tall buildings used in this study (Source: AIT-Consulting)
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Figure 4.5-8. Comparison of actual and simulated output values from ANN models (Source: AIT-Consulting)

Figure 4.1-4. Comparison of actual and simulated output values from ANN models (Source: AIT-Consulting)
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Figure 4.9-12. Sensitivity of output from ANN models with varying height of building (AIT-Consulting)

Figure 4.13-16. Sensitivity of output from ANN models with varying height of building (Source: AIT-Consulting)
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Model III: Model Assessment for the Ratio of 
Core Wall Area to Floor Area at the Top of the 
Podium Level 
 
ANN Model III was trained with the architectural 
dimensions of tall buildings to the ratio of core 
wall area to the floor area of the tower at the 
top of the podium level. Model III can be used 
to simulate the ratio of total core wall area to 
floor area of tower at the top of the podium 
level for new tall buildings in the preliminary 
design stage. The area of the shear wall for target 
variables were taken from the results of code 
based design procedures. 
 
The most appropriate artificial neural network 
models among several architecture network and 
learning algorithms were chosen based on the 
mean square error and correlation coefficient 
between the actual and simulated value of 
training, testing and validation sets during 
the training processes. For network Model III, 
an architecture network of (14:5:1) with a L-M 
learning algorithm shows higher correlation to 
training and testing sets. Figure 4.3 shows that 
the simulated outputs of Model III are very close 
to the actual value from code based design. The 
outputs of the networks that are modified with 
changing the vertical dimension of the building 
are shown in Figure 4.11. 
 
Model IV: Model Assessment for the 
Weight Per Unit Floor Area Ratio of the 
Tower (KN/m2) 
 
The most appropriate artificial neural network 
model was selected from a different architecture 
network and learning algorithm based on the 
least mean square error and highest correlation 
coefficient between the actual and simulated 
values of training, testing and validation 
sets during training. For network Model IV, 
architecture network (14:15:1) with a L-M 
learning algorithm shows a higher correlation 
to the training and testing sets. The simulated 
output and actual output from code based 
design are much closer to each other, and can 
be seen in Figure 4.4. From Figure 4.12 the 
simulated output by Model III is changed when 
the height of the building is increased. 
 
Model V: Model Assessment for the Weight 
of  the Building Per Unit Volume Ratio of the 
Tower (KN/m3) 
 
The simulated value of weight per unit volume 
of the tower by network Model V and from 
code based design are close to each other with 
architecture network 14:10:5:1. Two hidden 
layers and 15 numbers of hidden nodes with 
L-M algorithms give better performance to test 
buildings and can be shown in Figure 4.5. The 
simulated output of network Model IV with a 

changing the vertical dimension of the buildings 
can be seen in Figure 4.13. 
 
Model VI: Model Assessment for the 
Thickness of the Shear Wall (m) 
 
The minimum mean square error for both 
training and testing sets were found with 
25 hidden nodes in a single hidden layer 
architecture network. The network architecture 
14:25:1 with the L-M learning algorithm was 
selected for the simulation of new data. The 
actual shear wall thickness from code based 
design and simulated from network Model VI is 
shown in Figure 4.6. The change in the simulated 
value of outputs with increases in the height of 
the building can be shown in Figure 4.14. 
 
Model VII: Model Assessment for the 
Maximum Storey Drift Ratio 
 
The network Model VII with architecture 
network 14:10:1 and the L-M learning algorithm 
shows the minimum mean square error for both 
the training and testing sets was selected for 
the simulation of maximum storey drift for the 
new buildings and is shown in Figure 4.7. When 
input parameters are modified by the changing 
height of the building the network output for 
testing the building were also changed as per 
Figure 4.15. 
 
Model VIII: Model Assessment for the Ratio 
of Base Shear to the Total Weight of the 
Building 
 
The artificial neural network with architecture 
network 14:5:1 and the L-M learning algorithm 
was selected with minimum mean square error 
for both training and testing sets. The actual 
and simulated values of the percentage of base 
shear to total weight at the RSA elastic level of 
the test building can be shown in Figure 4.8. 
The simulated output of the networks with 
changing building height was observed, and the 
simulated values are shown in Figure 4.16. 
 
 
Conclusions and Recommendations

•	 From eight ANN models result 
an artificial neural network with 
supervised learning which can be 
used in the preliminary design of tall 
buildings. Applications of an Artificial 
Neural Network that simulates basic 
structural design and response 
parameters of new buildings is very 
useful to select the appropriate 
structural components in preliminary 
building design. The output of 
Artificial Neural Network models 
can be used in starting preliminary 

design with the most appropriate size 
of structural components and also 
to check the result of the structural 
design very quickly.

•	 A properly trained Artificial Neural 
Network can reliably predict the 
key structural parameters from 
architectural drawings. The developed 
ANN models can map architectural 
data to begin structural designs, 
providing results through a heuristic 
approach. The trained network 
reliably predicts the output for various 
ranges of data and outputs can be 
shown from the sensitivity of network 
models with different input variables.

•	 Different neural network model sets 
need to be trained for each parameter 
to improve reliability. Results of 
eight different ANN models for test 
buildings shows that the predicting 
capacity of Artificial Neural Network 
models for new buildings were close 
to structural design results. For new 
building sets, the Pearson correlation 
coefficient was found to be over 80%. 
Very small deviations between actual 
and simulated results shows the high 
performance of the network. The 
uniform distribution of input vectors 
leads to good network performance.

•	 The performance can be improved 
by increasing training data sets of 
tall buildings in the Philippines or a 
similar seismic region.

•	 Earthquake and wind loading 
parameters can be added if sufficient 
building data of different seismic 
zones and exposure conditions are 
available and also utilized in the 
results of a performance based design 
for higher accuracy. 

•	 Bayesian bootstrapping can 
be applied in future studies. 
To evaluate the sensitivity and 
optimum input nodes, principal 
component analysis and genetic 
algorithms can also be used.
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