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Abstract | fFE

Conventional legacy systems in the design of supertall towers employ belt trusses, outriggers,
and perimeter-bracing to achieve the required tower performance at the expense of open
architecture. The Ladder-Core System developed at SOM presents a novel method in the design
of supertall structures, enhancing the flexibility of architecture while providing the ductility,
redundancy, and uniformity of stiffness compromised in legacy systems. The Ladder-Core System
features eight mega-columns at the perimeter, which form the vertical rails of the ladder on
either side of the core. Composite-coupling beams act as the ladder rungs, connecting mega-
columns at the perimeter to the interior core, and thereby creating a comprehensively stiff lateral
system. Using 28-meter-long beams to funnel perimeter gravity loads to the mega-columns
eliminates the tension produced by overturning moments. Overall, the Ladder-Core System is
defined by unobstructed occupant views, a simple floor plate, and inherent structural stability.

Keywords: A-E Integration, Composite Coupling Beams, Jumbo Vision Glass, Ladder

System, Lateral System Optimization

BEEEFIRIT PEEHZ AR R TPENTES. HEHTRMEILRIE, IR TR
KLY FEAVEREILEE. FASOM TFRANEF LRI RIEH TS /EAMIRITRIF
Tk, X—ILEERRITERITEERIERY,  thieH T LA R P RSIHITEE,

TURE, HRIEAR BRI, BF- 2O BRASESEUA) IRENR, HERLD
BRI B FEEIRIS . B “HFEE " BIASEERRGEIRIE NSRRI

RO BIERERRER, R T RIFNIERSS

Wi E 2. RT0ET 28KRIREEZR NG BT

BHENEZSFNERE, Bl T BB IEF LA . TEHREHYIE, &
SERIEEINR, LIRS EINERE T B F OB R,

X BF-TIRE—AME. A6EER. FAUHKE. B4R, MRERT

Introduction

Shenzhen Shum-Yip Upperhills is a mixed use
development located in Shenzhen, People’s
Republic of China (Figure 1). Shenzhen is

one of the fastest growing cities in China,
and its proximity to the Asian financial hub
of Hong Kong has been a major factor in its
phenomenal growth.

Situated at the northwest corner of the
intersection between Huanggang Road

and Sunggang Road in the Futian District of
Shenzhen, Shenzhen Shum-Yip Upperhills is
one of the most ambitious real estate ventures
in the city, consisting of Class A office buildings,
a luxury hotel complex with banquet facilities,
and varied retail development on a single
property. The development links Lotus Hill
Park and Beacon Hill Park on either side of the
property via pedestrian bridges across major
arterial roadways (Figure 2).

Due to Shenzhen’s economic growth and
active construction, the real estate market is
poised to have increased demand and supply
of leasable office space. The client for this
project provided a very clear directive to the
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Figure 1. An architectural rendering of the proposed Shenzhen Shum-Yip Upperhills development (Source: Skidmore,
Owings & Merrill)
B RYIER W _EIT & RERIRSRE (KR Skidmore, Owings & Merrill)

Figure 2. The project site and proposed zoning (Source: Skidmore, Owings & Merrill)
E2 INEZEELE KR Skidmore, Owings & Merrill)
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design team: the quality of the office spaces
needs to set Shum- Yip Upperhills apart from
other offerings in the real estate market.
Along with creating premium office spaces,
the overall form of the two towers themselves
should be simple, yet iconic in nature. Tower
Two, the smaller of the two towers at 300m,
contains Class A Office space (see Figure

2). Tower One targets the high-end of the
commercial market, with an international
brand five-star luxury hotel in the upper
segment of the tower.

Tower One, the subject of this paper,
contains 80 floors and is approximately
390m tall - itis the tallest building in the
development. The program consists of
high-end Class A Office space in the lower
66 floors and hotel guest rooms and related
amenities on the upper floors. The topmost
floor houses a restaurant with roof garden
and a helipad (Figure 3). The architectural
design and the complementing structural
system of Tower One are an emphatic
response to the desire of the client.

Architectural Intent and Expression

In addressing the wishes of the client, the
architectural and structural design teams
aim to emphasize the world-class, spatial
experience for each visitor, tenant, and

employee. Given the project site, Shum Yip Figure 3.The evolution and concept for the Ladder-Core System (Source: Skidmore, Owings & Merrill)
Tower One has the unique opportunity to B8 BT L BHRMESREL (R Skidmore, Owings & Merrill)

juxtapose Shenzhen's natural beauty with

its modern cityscape. Connecting to Beacon
Hill Park and Lotus Hill Park, Tower One is at
the forefront of the city’s urban economic
expansion, even as it maintains its foothold
in nature. The design seeks to take advantage
of the expansive space and unobstructed
views out to the parks and bustling
metropolis (Figure 4).

In order to achieve this liberating plane of
vision, the structural system is designed to
accommodate a column-free exterior fagade
as well as a long-span uninterrupted interior
space. The gravity system features eight
steel reinforced composite mega-columns
strategically located on the perimeter,
concealed as the divisions between open
office space and premium, cantilevered,
corner office space. Through structural beam
and slab integration, structural framing is
devoid of any girders spanning to the core.
Orienting the larger depth members along
the perimeter and maintaining shallower
depths elsewhere allows for a continuous
mechanical loop on each floor. The built-up

. . Figure 4. Left: A 3-D view of Tower One’s structure; Right: A 3-D view of the typical floor framing (Source: Skidmore,
steel girders spanning between the mega-

Owings & Metrrill)
B4 E EEERNZHOE, A8 VERBN=40E CRFE Skidmore, Owings & Merrill)
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columns along the perimeter are optimized
for a uniform 3.0m clear height for the entire
floor. Cladding modules of 3.0m width, not
the usual 1.5m width, are utilized to further
reduce obstructions to outside view. The
result is a clear, breathtaking perspective from
anywhere in the office.

Pioneering Building Enclosures for
Supertall Buildings

With Shum Yip Tower, SOM has pioneered

a new model for the enclosure design of
supertall towers. Here SOM establishes an
innovative, flexible, and highly transparent
skin to accommodate the client’s desire for
the highest-quality office spaces in Shenzhen
that maximize the views.

A 1.5m wide curtain wall module is standard
when it comes to designing supertall
commercial towers. To deliver the desired
openness within a pristine envelope, SOM
has added dimension to the vision glass,
thus minimizing the number of mullions.
Here a larger 3m-wide curtain wall units

are utilized comprise of thicker vision glass
composed of 16mm laminated outer lite and
a fully tempered inner lite to maximize the
evenness and reduce possible imperfections.
In order to achieve the maximum
transparency at the tower’s notched corners,
three 2.25mx2.25m L-shaped glazing units
were fabricated. This strategy enabled the
design team to relocate the vertical mullions
from its typical glazing corners.

Reduced frame ratio also contributes to

the sustainable design objectives such as
maximizing daylight harvesting for regularly
occupied tenant spaces as well as improving
the energy performance by reducing the
thermal bridges. The 8.5m cantilever to

the corner balanced by a 28.5m back span
helped achieve deflection criteria associated

with conventional slab edges of tall buildings

and result in the minimum possible stack
joint height.

Integration With Office Planning Modules

The client desired a Class A office space

with high floor to ceiling heights and
uninterrupted views. The mega-columns are
shaped to a uniform 4.5m in depth in the
office levels and varying in width along the
height of the building to match the typical
office module. Columns are strategically
placed along the perimeter of the office floors

to align with the outer core walls, creating
two zones of office spaces: one with 28.5m
between columns on the four sides of the
floor plan, and another with an expansive
view at the four corners of the floor plan. Such
"Open Office” spatial arrangement minimizes
the visual impact of the structural elements,
allows more flexibility for planning for a global
workplace, and encourages collaboration and
knowledge sharing.

The architectural layout is designed such that
the elevator lobbies within the core walls also
serve as corridors, allowing up to 4 tenants per
floor without adding an additional perimeter
corridor. This layout effectively increases the
floor efficiency compared to a conventional
office floor layout. The internal corridor layout
also yields a core with a larger footprint,

which is inherently stiffer and results in more
optimum use of concrete (Figure 5).

Integration With Mechanical Zones

At mechanical floors, where an unobstructed
view is not valued (Figure 6), the floor framing
is optimized for heavy loads by introducing

a perimeter truss that utilizes the entire
height of the floor. Perimeter belt trusses
provide required stiffness for mechanical floor
operation, including gravity, vibration and
acoustic performance. These belt trusses are
integrated with louvers for exterior air exhaust
and intake.
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Figure 5. Top: The mega-column layout showing the gravity load path which eliminates tension; Bottom: An
architectural rendering of the mega-columns at the tower base (Source: Skidmore, Owings & Merrill)

E5. LE: BRSHERFNENEEREZE, TE BREPHNERMTRINRE CBR: Skidmore,

Owings & Merrill)
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Figure 6. Left: The seamless integration of the architectural layout and the structure of typical office and hotel floors;
Right: A comparison of corridor and structural layouts (Source: Skidmore, Owings & Merrill)

E6. ZE: JEENERN AT REANSRI TS

Skidmore, Owings & Merrill)

The large column-free interior spans provide
more flexibility for MEP Planning. Absence of
outrigger trusses within the floor plate enables
more direct mechanical transfers and reduced
clashes with structural elements. The open
space allows more equipment to be placed

on each floor, resulting in the elimination of
one mechanical floor from the building stack
during the design process (Figure 6).

Integration With Hotel Planning Modules

The mechanical level trusses above and
below the hotel floors double-up as transfer
mechanisms for perimeter hollow steel square
HSS posts at the hotel floors. The vertical
members of the perimeter trusses above

and below guest rooms are aligned with the
hotel guest room module, providing direct
support for the HSS posts, which are located
in line with the demising partitions between
the hotel rooms. The conventional framing at
the hotel levels results in shallower perimeter
beams and eliminate the need for long- span
perimeter girder, reduce story height, and
reduce required steel quantities without
compromising the architecture of the space.

Progressive collapse prevention is taken
into account in the design of the hotel floor
gravity system. Redundancy is achieved
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by having a transfer truss both above and
below the hotel guest room zone and by
designing the members for magnified loads
in the event that certain elements lose load
resisting capacity. This in effect creates an
alternate gravity load path to the mega-
columns from for the perimeter frame in the
hotel segment (Figure 7).

Managing Gravity Load Paths

Floor framing beams span between the
concrete core and the perimeter girders.
From the floor framing design perspective,
the location of the mega-columns creates

a balanced cantilever system along each
side. This reduces the depth of the interior
span as well as the cantilever span of the
perimeter girder. A double perimeter girder
provides a redundant load path to the mega-
columns (Figure 8). Load transfer between
the perimeter girders and mega-columns is
achieved by the connection of the girder with
the embedded steel in each mega-column.

For a conventional framing system, where
columns which are not part of lateral force
resisting system share gravity load with the
mega-columns, designing for tension due

to lateral loads in mega-columns can be
challenging. In case of Shum Yip Tower One,
all gravity loads at the perimeter are funneled
through the eight mega-columns, while the
rest of the gravity loads are directed towards

the center core. This has eliminated tension
in Mega-Columns and Core walls due to
lateral loads.

The Architectural design of the entrance
podium boldly expresses the mega columns
as part of the key architectural design
features. Without a veiling enclosure, it
celebrates the fact that the perimeter
structure of the tower consists only of eight
mega columns.

Lateral Load Resisting System
Optimization

The lateral system is comprised of a center
concrete core and eight mega- columns.
These columns are aligned with the four
corners of the center core. Each mega-
column is engaged with the concrete core
by a composite coupling beam at each story
level, forming the ladder-core system.

From the lateral system point of view, the
elongation and alignment of the mega
columns with the exterior core walls creates
an efficient lateral load path. Locating the
mega-columns at the extreme edge of the
building footprint produces the largest
coupling moment arm with the core (Figure
9). This results in maximized lateral load
resisting capacity for the system and an
aspect ratio of 7.2 to resist overturning.

Figure 7. Left: A typical office floor mechanical routing plan and section; Right: A mechanical floor comparison
showing the optimization of space (Skidmore, Owings & Merrill)

B £E: ENNBRINRAETEENEEE, A8 YMERR=EENEE (Skidmore, Owings & Merrill)
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Figure 8. A perimeter girder plan and sections showing
the optimal use of the balanced-cantilevering concept
(Source: Skidmore, Owings & Merrill)
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On upper levels where the ladder action is
strong and ladder-core system contributes
higher percentage of lateral stiffness,
efficiency is achieved by reducing the
concrete core stiffness. Opening sizes within
the core walls are gradually increased along
the height and web wall openings are
introduced (Figure 10).

To ensure highly ductile performance, the
steel section in each composite coupling
beam is moment connected to the
embedded steel in the mega-column. The
perimeter girder is also moment connected
with the embedded steel in the mega-
columns, providing moment frame action
which complements the ladder-core system.

The ladder-core system provides numerous
advantages over conventional outrigger
systems. Providing coupling beams at

each level effectively distributes an ideal
percentage of story shears to the perimeter
of the building. Overall performance of
structure is uniform and results steady
variation of story stiffness along the height.
Composite coupling beams provide
excellent ductile performance and produce
more plastic hinges on various locations.
This ensures higher energy dissipation and
greater redundancy.

The ladder-core system of Tower One is
designed to resist various levels of extreme
wind and seismic loads per Chinese
Standards. All serviceability criteria are
fulfilled for a 50 year return period of wind
loads and elements are designed for a 100
year return period. The seismic performance
objectives set for Shum-Yip Tower One
refer to Frequent, Moderate, and Rare levels
of seismic loading. Frequent earthquake
loading corresponds to a probability of
exceedance in 50 years, or a 50 year return
period. Moderate earthquake loading
corresponds to a probability of exceedance
of 10% in 50 years (or a 500 year return
period); and Rare earthquake loading
corresponds to a probability of exceedance
of 2% in 50 years (or a 2500 year return
period) (Figure 11).

A superior set of design objectives were
selected for the essential elements of
ladder-core system. Mega-columns and
composite coupling beams are expected to
remain elastic under Frequent and Moderate
earthquake loading and non-yielding under
Rare earthquake loading. Reinforced concrete
core wall corners are also expected to

remain elastic under Moderate earthquake
loading and non-yielding in shear under Rare
earthquake loading.

Additionally, from a lateral system
performance point of view, the belt trusses
positioned at the regular intervals along

the height of the building provide added
coupling between the core and perimeter. In
addition to transferring the heavy mechanical
gravity loads to the mega columns, the trusses

FAZUE I N A S0 S B2 9 10%

(SREIEIALTEF) ; FEMEREHY
IR A E0F B E 2%  (SREIEA
2500 4E) (B 11) .
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—RIBririt Bir. ERMEANAESEE

Figure 9. Top Left: A photograph of the curtain wall mock-up; Top Right: A large curtain wall module and the unique
corner unit; Bottom: An architectural rendering of a typical office showing a minimal obstruction due to mullions

(Source: Skidmore, Owings & Merrill)

B9 £ tE: mERLER, ALE BAREERIIMFNAESSET, TE: EDRERE-EIRIR

2B (R Skidmore, Owings & Merrill)

Figure 10. Top: The mega-column and core corner embedded steel detail; Bottom: A 3-D view of the composite
coupling beam and its connections (Source: Skidmore, Owings & Merrill)
E10. LB ERFMZOBRIMTIERMMEE, TE: EaERRRERSIN=40E KR Skidmore,

Owings & Merrill)
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Figure 11. 3-D finite element modeling and the results of coupling beams to mega-column and core wall connections (Source: Skidmore, Owings & Merrill)

B =R
increase stiffness along the height of the
tower, limiting deflections under lateral loads.
Under severe lateral loads, such as an extreme
earthquake event, the combined effect of belt
trusses and mega-columns produces a mega-
frame action and induces a second line of
defense when hinges start forming in certain
lateral elements such as the link beams and
composite coupling beams.

Ladder-Core System Concept

Rather than a lateral system with outriggers
at discrete locations, the Ladder-Core
System, by linking the mega-columns

and the core walls with steel embedded
composite coupling beams at every floor,
has been adopted on this project (Figure 12).
At early stages during the design process, a
study was done to compare the performance
of an outrigger system and the ladder-

core system. The result of the study shows
that the ladder-core system presented the
following advantages:

Firstly, due to the stiffness of the coupling
beams, a more evenly distributed axial

5 BRI O EERN = HAIRTTREIRER (R Skidmore, Owings & Merrill)

stress ratio is observed between the

mega columns and the core walls which
results in better creep and shrinkage
performance. Secondly, rather than having
the lateral stiffness concentrated at the
outrigger floors, the composite coupling
beams uniformly distribute stiffness and
load path throughout the height of the
building, preventing sudden changes in
lateral stiffness and producing a smoother
curve when looking at the building drift for
wind and seismic loads. Lastly, the Chinese
code requires the frame to take a certain
percentage of the base shear at every floor
outside of the “strengthened floor”, i.e. floors
with outriggers or belt trusses. With the large
column spacing, it not possible to achieve
the frame shear ratio with the outrigger
system. The composite coupling beams
effectively engage the mega-columns in
shear at very floor and an average of 8% of
the base shear is achieved in the frame at
every floor through the ladder-core system.

One other advantage not to be overlooked

is the level of redundancy in the interlocking
of the core and the mega-column that is
achieved by linking the two at every floor
level rather than at select levels with outrigger
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Figure 12. Left: The Ladder-Core System - the proposed construction sequence; Right: A photograph of Tower One under construction (Source: Skidmore, Owings & Merrill)

B2 £8: BFROBERMTRIING, A8 Eg—mEIERA KR Skidmore, Owings & Merrill)

truss along the height of the building. This
very repetitive nature of the Ladder-Core
System will also lead to simplifying and
speeding up construction compared to a
conventional outrigger system.

Composite Coupling Beam Performance

The advantage of the Ladder-Core System
lies in its multiple connections between

the core and the perimeter, uniformly
distributed throughout the height of the
building and in not having a few connections
concentrated at discreet locations along its
height. Thus performance of the Ladder-Core
System, consisting of the mega-columns,

the composite coupling beams, and their
connectivity to the corners of the core, is

crucial to the success of this structural system.

Because of their critical nature, the design
for these Ladder-Core System elements is
based on the stringent seismic performance
objectives set forth in the Lateral System
Optimization section.

3D FEM analysis of composite coupling
beam connections to the mega-column and
core corner walls are used to visualize

and verify stress levels and transfer under
Moderate and Rare earthquake load
combinations. The connections are analyzed
by means of the general purpose finite
element software Strand?7.

The detailed modeling of the Ladder-Core
System is also utilized to verify the following:

1.Constructability of the connection, with
the inclusion of rebar, embedded steel
elements, and concrete cover and clear
spacing requirements

2.Restraint of the Composite Coupling
Beam by the Mega-Column

3.Continuity of the Mega-Column
embedded steel section through the
connection

4.Full engagement of the embedded
steel section in the Mega-Column by
the embedded steel section of the
Composite Coupling Beam by the use
of stiffeners

5.And full development of Coupling Beam
steel reinforcement within the Mega-
Column cross section.

The loads for the finite element models
are extracted from the overall building
ETABS model.

Several cases of these already conservative
elastic forces are then considered for the FEM.

Analysis, including maximum axial force on
the mega- columns, maximum bending
moment in the mega-columns about both
axes, and maximum differential axial load
on the two mega-columns framing into
the core corner connection. Results for the
governing Moderate and Rare earthquake
load combinations from Chinese Code are
shown below.

As shown below, in each type of composite
coupling beam connection, steel plates in
the connection stay elastic under Moderate
earthquake loading. Steel reinforcement also
remains elastic under Moderate earthquake
loading, although some cracking of the
concrete occurs. Concrete crushing does

not occur under Moderate earthquake
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loading. The performance objectives for the
Ladder-Core System elements are met for the
Moderate earthquake load level.

For the Rare Earthquake load level depicted in
the stress diagrams above, the performance
of each connection is similar to that of the
Moderate earthquake load level. Stresses in
the steel plates of each type of connection
remain below yielding levels. Stresses in
concrete are below crushing levels. Although
cracking occurs in the concrete under Rare
Earthquake loading, tensile stresses in rebar
are below yielding stress.

By meeting the high performance targets set
for these crucial elements, we ensure that the
Ladder-Core System has a robust performance
even during an extreme seismic event and
there is no potential for development of a
weak zone or failure mechanism, anywhere in
the system.

Conclusion

The Ladder-Core System of Tower One
provides a superior performance by utilizing
the entire depth of the tower footprint,
without comprising ductility, redundancy
and regularity of stiffness along the height
of the tower. Having the mega-columns as
the only gravity load resisting system for the
entire perimeter fully utilizes the compression
due to gravity to counterbalance the tension
due to the lateral loads, resulting in net zero
tension at the base of the building for wind
and earthquake loading. No tension in the
composite columns allows optimum use

of both concrete and steel, and therefore a
reduction in overall steel quantities.

Other projects in China with similar objectives
of creating large open unobstructed perimeter
have had to introduce a perimeter brace
system in order to achieve the proportional
lateral load sharing between the interior core
and the secondary perimeter system stipulated
in the Chinese building codes. However, in
case of Shum-Yip Tower One, the strategic
location of composite mega-column and
double perimeter girder system in a closed
loop connected to the central core with
uniformly distributed composite coupling
beam achieved the required ratio of lateral load
distribution without utilization of obtrusive
perimeter bracing system.

The project has been approved by the Chinese
Authorities and is currently under construction
with completion slated in late 2017.
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