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Introduction 

Although the potential of tall buildings to 
improve the overall sustainability of urban 
life is strong, further research and 
experimentation is needed, in order for this 
typology to comply with current and 
near-future regulations on embodied carbon 
and carbon emissions (EU 2010; Voss, Musall 
& Lichtme 2011; NYC 2015). Additionally, 
there is a significant gap between the 
practice of high-rise development 
worldwide, and the expertise gained on how 
to make these buildings more sustainable 
and energy-efficient (Donnolo, Galatro & 
Janes 2014; Simmonds 2015). 

Tel Aviv, Israel, the focus of this study, has 
experienced vibrant high-rise activity. In 
2011, the city’s Planning and Construction 
Committee issued the 2025 City Master Plan, 
setting new guidelines allowing further 
skyrise development (Fox 2011) (see Figure 
1). This study considers high-rise buildings as 
an urban phenomenon closely related to city 
living, and studies design strategies for 
advancing their energy efficiency. 

An important consideration of high-rise 
buildings is their vast scale, which is also 
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translated into increased energy loads, in 
comparison with low-rise construction 
(Cook, Browning & Garvin 2013; Leung & Ray 
2013). As a result, their impact on the urban 
scale is much more energy-intensive than all 
other construction. According to the United 
Nations Environmental Program - Sustainable 
Buildings and Climate Initiative (UNEP-SBCI), 
the emissions produced from the 
operational energy (OE) of buildings, mainly 
used for heating, cooling and lighting, form 
the largest source of building-related 
greenhouse gas (GHG) emissions 
(approximately 80–90 percent), in relation to 
the emissions produced by the embodied 
energy (EE), used in the process of raw 
material extraction and processing (La Roche 
2012). In addition, the building sector today 
is the most energy-intensive sector, 
accounting for almost 50 percent of GHG 
emissions. So, in order to reduce these, it 
becomes crucial to enhance the energy 
efficiency of buildings by reducing the OE. 

This study looks at improving the energy 
efficiency of high-rise buildings, by focusing 
on the initial concept design stages, and 
more specifically on the design of the 
building envelope, considered as a passive 
design strategy that has the potential of 
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reducing energy loads, by acting as a 
mediator between indoor and outdoor 
conditions (Cheung, Fuller & Luther 2005; 
Saroglou et al. 2017). A vital consideration in 
this relationship is the climatic conditions of 
the building’s location. So, by designing a 
climatically responsive building envelope 
that interacts appropriately with the ambient 
climatic conditions, it is possible to take 
advantage of passive heating and cooling 
techniques, and reduce the operational 
energy, i.e., heating and cooling (Yik 2005; 
Choi, Cho & Kim 2012). 

However, current architectural tendencies, 
initiated from the mid-20th century onwards, 
especially prominent in high-rise buildings, 
portray an increased transparency of the 
envelope, and lightness of the structure, 
resulting in high cooling and heating energy 
loads (Allard & Santamouris 1998). On the 
other hand, during the last few years, 
double-skin façades (DSFs) have gained 
popularity over single-skin curtain walls, as a 
more advanced envelope scenario that leads 
to improvements of the building’s energy 
performance (Wood & Salib 2013). But, 
despite the number of built DSF built 
projects, and the numbers of DSF studies 
conducted, design guidelines on DSF 
energy performance are lacking, 
especially in relation to local climate (Joe et 
al. 2014; Ahmed et al. 2015; Ghaffarianhoseini 
et al. 2016). 

This paper studies the performance of a 
building envelope for a high-rise reference 
model at different heights, in the hot and 
humid climate of Tel Aviv. The Tel Aviv 
climate (in terms of dry-bulb temperature, 
relative humidity, wind speed, and wind 
direction) is shown in Figure 2. Heating and 
cooling load comparisons are made by 
gradually upgrading the thermal properties 
of the building envelope for improving 
energy efficiency. Studies in hot climates are 
of special importance, due to the increased 
solar gains entering a glass façade, 
intensifying the cooling requirements. In 
addition, most research on double-skin 
envelopes, the focus of this study, has 
predominantly been undertaken in cold and 
temperate climates, with limited research 

taking place in hot ones (Hamza 2008; 
Pomponi et al. 2016; Halawa et al. 2018). 

 
Design Considerations for High-Rise 
Energy Efficiency

The effect of height on high-rise 
energy loads 
A building interacts with the outdoors 
through the envelope (walls, roof, windows) 
generally, and specifically with the thermal 
properties of the materials that make up the 
building envelope. When estimating the 
energy loads of a high-rise building, it 
becomes important to take into 
consideration the changing microclimate 
with height, and how this affects the 
materials of the building envelope, through 
heat exchange with the ambient air by 

Figure 1. Tel Aviv skyline. © Antony Wood
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Figure 2. Tel Aviv annual climatic data.  
Source: EnergyPlus
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Figure 3. DSF configurations. left: ventilated/external air curtain DSF, right: airtight/air buffer DSF. 

conduction, convection, and radiation (Ellis & 
Torcellini 2005; Lotfabadi 2014).

More specifically, wind speed increases with 
height above ground, while dry-bulb 
temperature drops. As the typical height of a 
meteorological station anemometer is 10 
meters above ground, wind speed at higher 
altitudes is calculated to ASHRAE standards 
(ASHRAE 2009). On the other hand, dry-bulb 
temperature decreases with height at an 
almost linear rate, of approximately 1°C per 
150 meters (NOAA 1976). The results in this 
study portray the changes in energy loads 
(heating and cooling) between the different 
heights of a simulated high-rise reference 
model, thus presenting information on the 
relationship between the building envelope 
and its microclimate, in relation to height 
above ground. 

Natural ventilation in high-rise buildings 
When considering the energy efficiency of a 
building, the implementation of passive 
design strategies becomes vital. Natural 
ventilation has the potential of considerably 
reducing cooling loads, especially prominent 
in a hot climate, but its implementation in 
high-rise buildings can be challenging. The 
effectiveness of natural ventilation is relevant 
to the climate and microclimate conditions, 
e.g., dry bulb temperature, humidity, wind 
intensity and wind direction, as well as the 
building’s location, e.g., open plane, or 
dense/semi-dense city environment 
(Capeluto & Ochoa 2013; Zhou et al. 2014).  

In the case of high-rise buildings, the 
potential of natural ventilation is also 
relevant to the changing microclimate with 
height: dry-bulb temperature decreasing, 
and wind speed increasing. 

A study on the natural ventilation (NV) 
potential of high-rise structures located in 
cities with different climatic conditions in the 
United States found that the presence of 
high humidity levels created minimal 
variations in NV from ground to top, while in 
cities with low humidity, NV hours were 
reduced. On the other hand, cities with 
seasonal variations, like New York and 
Chicago, presented no NV potential during 
winter, while during summer the NV hours 
suggested considerable reductions of 
cooling energy (Tong, Chen & Malkawi 2017). 
An effective way to introduce natural 
ventilation into a high-rise structure is 
through a double-skin envelope. The exterior 
façade layer acts as a buffer zone to the 
higher wind speed intensities at higher 
altitudes while, depending on the climatic 
conditions and seasonal variations, the 
introduction of openings can allow for 
natural ventilation to take place within the 
cavity, and passively cool the building. 
Further design strategies, like segmentation 
of the DSF, i.e., per floor height, can minimize 
the wind intensities that may be created 
through buoyancy forces within the cavity, 
generating a higher level of wind control 
(Etheridge & Ford 2008).

 

The Double-Skin Façade (Dsf) Envelope 

The double-skin envelope is essentially 
comprised of three layers: the internal façade 
(layer 1), the intermediate air cavity (layer 2), 
and the external façade (layer 3). DSF 
typologies are classified according to their 
ventilation strategies (natural, mechanical, or 
hybrid), and according to the type of 
air-exchange strategies with the ambient 
atmosphere: exhaust air, supply air, static air 
buffer, external air curtain, and internal air 
curtain (Haase, Da Silva & Amato 2009). A 
third set of classifications relates to the 
design of the DSF: box window, shaft-box 
façade, corridor façade, and multi-story 
façade (Pomponi et al. 2016). These 
classifications refer to the design and 
construction of the DSF, while there are no 
specifications to date on the optimum 
design for energy efficiency according to 
climate (Wood & Salib 2013).

Studies around the world on the 
performance of DSFs stress the difficulties of 
accurately simulating the airflow that takes 
place in the cavity (Høseggen, Wachenfeldt, 
& Hanssen 2008; Chan et al. 2009; Halil & 
Mesut 2011; Kim & Park 2011). The studies are 
based on both simulations and 
experimentation, where the experimental 
results validate the simulation results, and 
vice-versa. Although there are still no official 
specifications on DSF optimum design, 
especially in relation to climatic conditions, 
results show a good agreement between the 
experimental and simulation results 
(Quesada et al. 2012; De Gracia et al. 2013). 
Studies on DSF performance are still taking 
place, albeit with a higher level of 
certainty on thermal simulations as a valid 
research tool. 

The proposed DSF under study is a corridor 
DSF, where the DSF is segmented per floor 
level, and has two windows on the exterior 
layer (top and bottom) for allowing natural 
ventilation to passively cool the structure 
(see Figure 3). The introduction of natural 
ventilation will essentially reduce high 
cooling loads that are prominent in the 
Mediterranean climate of Tel Aviv, where this 
study takes place. Studies on DSF energy 
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efficiency in hot and humid climates are of 
special importance, due to the high levels of 
solar radiation entering a glass envelope, 
resulting in high cooling loads. In this paper, 
the energy efficiency of a naturally ventilated 
double-skin envelope is studied in relation to 
the energy efficiency of the high-rise 
building typology in general, with a focus on 
reducing the high cooling loads prevalent in 
this and other humid climates. The 
methodology draws on the conclusions from 
two previous publications (Saroglou et al. 
2019 & 2020), and investigates further an 
optimum DSF design for energy efficiency 
according to climatic conditions, building 
height, and interior thermal comfort. 

 
Methodology

Simulations are conducted using EnergyPlus 
that include a variable in its calculations, 
estimating wind acceleration with height 
according to ASHRAE (2009), and air 
temperature drop by elevation, while energy 
loads are calculated in relation to indoor 
thermal comfort standards: 20°C for winter, 
and 26°C for the summer (Fanger 1970; 
Givoni 1981). The simulated reference model 
is an office building with high loads, to 
accentuate even further the requirement of 

reducing high cooling loads. The envelope 
specifications, wall U-values and window-to-
floor ratio (WFR), meet the voluntary Energy 
Rating of Buildings Standard (SI 5282), which 
is one of the basic requirements in the 
Sustainable Construction Standard (SI 5281) 
(SII 2011) (see Table 1). 

Simulations are conducted at five floor levels: 
9 meters (ground level), 82, 167, 235, and 340 
meters, for the first phase, and at three floor 
levels: 9, 167, and 339 meters for the second 
and third phases. The specific floor heights 
are taken from CTBUH database on typical 
tall building characteristics for office 
buildings (2.7 meters for occupiable space 
with a 1.2-meter plenum) (CTBUH 2015). 
Every floor level of 3.9 meters’ height has a 
total of eight corridor DSFs, covering all 
orientations: 1: SE-E, 2: SE-S, 3: SW-S, 4: SW-W, 
5: NE-E, 6: NE-N, 7: NW-N, 8: NW-W. 

In Phase 1, a comparison is made between 
three envelope scenarios; one is with low-e 
glazing and external shading; another with a 
DSF envelope with low-e glazing as layer 1 
and single-clear as layer 3; and a third with a 
DSF with low-e glazing as layer 3, and 
single-clear as layer 1. Results of this study 
are based on a previous publication on best 
energy performance of glazing 

configurations in the Mediterranean climate 
(Saroglou et al. 2019), and are in favor of a 
DSF design with: low-e double-glazing as 
the exterior layer 3; a 1-meter air cavity for 
layer 2; and single glazing as the interior 
layer 1. This is a deviation from the typical 
DSF arrangement seen predominately in 
temperate climates, where the double low-e 
glazing is positioned as the interior layer of 
the double skin. 

In Phase 2 the focus is on the optimum DSF 
width, according to Tel Aviv climatic 
conditions. The simulated DSF cavity widths 
are: 0.2, 0.5, 1.0, and 2.0 meters deep, at 9, 
167, and 339 meters’ height. An initial 
analysis of the results of this study was 
published (Saroglou et al. 2020). Energy load 
reductions, both for heating and cooling, are 
recorded when increasing the cavity width, 
with a focus on cooling, as heating loads are 
very low to begin with. In order to best 
adjust the DSF design throughout the year, 
two windows are considered on the exterior 
glazing layer of the double skin, an air inlet at 
the bottom, and an air outlet at the top, each 
at a floor level of 3.9 meters high. These close 
during the cold season, from 1 November to 
31 March (air buffer DSF), and open during 
the hot season from 1 April–31 October 
(external air curtain DSF). Airflow Network 

Table 1. Simulation data for office reference model; internal heat gains, natural ventilation, and envelope 
characteristics. Heating operates when temperature drops below 15°C, and cooling operates when 
temperature rises above 26°C. Building envelope in accordance with Israel’s Green Building Standards. 

Internal Heat Gains for a Typical Office (460 m2 per floor)

People 45 per floor

Ventilation 0.1125 m3/s

Infiltration 0.6 ACH

Lights 7.2 W/m2

Equipment 11 W/m2

Mass Wall (S) U-value: 1.02 [W/m2-K]

Mass Wall (N/E/W) U-value: 0.54 [W/m2-K]

Clear Glazing 6 mm U-value: 5.778 [W/m2-K]

Double Glazing Low-e 6 mm/13 mm Air U-value: 1.626 [W/m2-K]

Operational Schedule

Heating Cooling

until 07:00, 15°C until 07:00, off

until 20:00, 20°C until 20:00, 26°C

until 24:00, 15°C until 24:00, off

“The authors’ double-skin façade 
(DSF) design is a deviation from the 
typical DSF arrangement seen 
predominately in temperate climates, 
where the double low-e glazing is 
positioned as the interior layer of the 
double skin.” 
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relation to the DSF design with the low-e 
glazing as layer 1, with the DSF having 
higher heating loads at ground level, while 
with height, their differences are diminished. 
However, the implementation of shading 
devices is not popular, especially in high-rise 
buildings, on account of potentially blocking 
valuable views, reducing natural light and 
therefore increasing the need for artificial 
lighting, while a DSF envelope is suitable for 
maintaining a desired level of transparency 
as well as energy reductions. In addition, 
further issues, like maintenance and 
cleaning of the building’s windows, also 
come into play when comparing the two 
options. Continuing the simulations on the 
energy efficiency of DSFs for the climatic 
conditions of Tel Aviv, results show that 
positioning the low-e glazing as the exterior 
layer of the DSF (3), and the single-clear 
glazing as the interior façade layer (1), 
cooling loads drop considerably from the 
first DSF option, and reduce even further 
from the scenario of low-e glazing and 
shading. By placing the low-e coatings on 
the exterior façade layer, the insulating 
performance of the glass is increased, as the 
ultraviolet part of the spectrum is reflected 
before entering the DSF zone, while the 
single clear glazing on the façade layer of 
the thermal zone allows exhausting heat 
gains, ideal for the hot and humid 
Mediterranean climate of Tel Aviv.

Phase 2 
Figures 5 and 6 show the heating and 
cooling loads of four DSF width scenarios: 
0.2, 0.5, 1.0, and 2.0 meters, at three height 
levels, L1: 8, L2: 167, and L3: 339 meters. 
Figure 5 depicts cooling loads for 21 June. 
From the graph, it is obvious that the 
highest cooling loads occur between 12:00 
and 16:00; likewise, within the lines of the 
results of Phase 1, is that heating loads 
increase with height, while cooling loads 
drop. In addition, the increase of the cavity 
width has a positive effect on cooling loads 
by decreasing them, with the 2.0-meter DSF 
presenting the lowest values, especially at 
339 meters’ height. 

Figure 6 depicts 21 December. It shows that 
heating loads are present during the 

Figure 4. Heating (H) and cooling (C) loads of three envelope scenarios: (1) SF (single façade): Double-low-e and shading 
(Sh.); (2) DSF: double-skin façade consisting of single (outer) plus double-low-e (inner), and (3) DSF: double-skin façade 
consisting of double-low-e (outer) + single (inner). U-values of wall-to-window ratios are set according to Israel’s GBS. 
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Phase 1 
Figure 4 shows the heating and cooling 
loads between three envelope scenarios: a 
single-skin envelope with low-e glazing and 
exterior shading devices; a double-skin 
envelope with low-e-glazing as layer 1 and 
single-clear glazing as Layer 3; and a third 
option where the low-e-glazing is layer 3 
and a single-clear layer 1. For all scenarios, 
the thermal properties of the envelope 
materials are designed according to Table 1. 
From Figure 4, it is obvious that with height, 
cooling energy drops, while heating 
increases for all scenarios. However, the 
cooling requirements are much more 
intense in relation to heating. In addition, 
the cooling versus heating loads work in a 
reverse manner, meaning that at ground 
level (9 meters high) are found the lowest 
heating and highest cooling loads; while at 
339 meters, are found the highest heating 
and lowest cooling loads, with the cooling-
load differential still being much more 
intense between the two. 

Further comparisons between the different 
scenarios shows that the building envelope 
with external shading performs better in 

(AFN) in EnergyPlus calculates the airflow 
between the three zones (stack effect and 
buoyancy), and the heat transfer to and from 
the thermal zone of the building. However, 
an hourly analysis of the DSF behavior for a 
summer day, 21 June, and for a winter day, 
21 December, showed that cooling 
requirements are also present during winter 
and are relevant to the: exterior 
environmental conditions, interior thermal 
comfort standards, time of the day, width of 
the cavity, and building height. 

In Phase 3, further simulations are 
conducted, with a focus on reducing the 
cooling loads present during winter, for all 
DSF widths. Four more days are simulated, 
and an hourly analysis of the heating and 
cooling loads is made for 10 and 20 January, 
and for 10 and 20 February. Conclusions are 
drawn on the heating and cooling 
requirements between the different DSFs for 
the different dates, while the hourly analysis 
provides an in-depth understanding 
between heating versus cooling 
requirements throughout the course of a 
winter day. Further simulations are then 
performed for reducing the high cooling 
requirements by taking the example of the 
“worst” DSF scenario. 
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Figure 6. Hourly data of heating (H) and cooling (C) loads of four DSF width scenarios: 0.2 m, 0.5 m, 1.0 m, and 2.0 m, 
between 08:00 and 20:00 for the 21 December. L1: 8.7 m, L2: 167 m, and L3: 339 m. 
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morning and evening hours, while after 
11:00 and until about 17:00, cooling loads 
are also present, even during this winter day. 
The highest cooling loads are observed at 
ground level (9 meters high) for the 
0.2-meter DSF, while by increasing the DSF 
width, both heating and cooling loads are 
reduced. These results prompted further 
studies on the behavior of the DSF on a 
winter day, which take place in Phase 3. 

Phase 3 
Figure 7 depicts four more winter dates: 10 
and 20 January, and 10 and 20 February, for 
the different DSF widths: 0.2, 0.5, 1.0, and 2.0 
meters. Expanding the winter day’s 
simulations, we see similar patterns in terms 
of heating requirements, with heating loads 
being present during the early hours of 
08:00–09:00, and 19:00-20:00 in the evening. 
On the other hand, cooling is only present 
during 20 January and 20 February, and it’s 
relevant to the higher ambient temperatures 
that occur during these dates. The pattern of 
cooling loads during these two dates is 
similar with the previous results of 21 
December, with cooling requirements taking 
place between 11:00 and 17:00, and peak 
times between 13:00–15:00. 

The highest cooling loads are observed for 
the 0.2-meter DSF at ground level of 9 
meters high, on 20 February. As a next step 
towards advancing the energy efficiency of 
the structure, this case scenario is simulated 
with the DSF alternating between an airtight 
(air-buffer DSF) and an open (external 
air-curtain DSF), depending on the 
temperatures that are created within the 
cavity. Figure 8 depicts a comparison on the 
energy loads, heating and cooling, between 
scenario A and B for 20 February. In scenario 
A, the DSF is airtight, and in scenario B, it is 
alternating between an airtight and an open 
space, from 08:00-20:00. Results show that 
scenario B achieves cooling load reductions 
of up to 50 percent less. 

 
Conclusions

The increasing number of high-rise buildings 
around the world directs the spotlight 

towards their energy performance and 
efficiency. This paper focused on the initial 
design strategies of the building envelope, 
by taking into consideration the specific 
climatic conditions of its location, i.e., Tel 
Aviv. Energy efficiency comparisons are 
made between different curtain-wall 
envelopes, and their relationship with the 
changing environmental variables with 
height. The intention of the simulated 
curtain wall designs was to depict current 
architectural practices, especially evident in 
high-rise construction, and propose 
strategies towards improving their energy 
performance, through appropriate detailing. 

Results showed increased energy savings, 
with a focus on cooling, between single-skin 
and double-skin envelopes (with an average 
of 50 percent less energy expended in the 
double-skin scenario), while further 
adjustment of the DSF design to fit the 
specific climatic conditions reduced energy 
loads even further. An average reduction of 
15 percent was observed in the DSF scenario 
with low-e glazing as the exterior layer. 
Further reductions occurred when increasing 
the DSF width, while an hourly analysis 
during a winter day revealed the presence of 
both heating and cooling loads, with a focus 
again on cooling. By considering a dynamic 
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DSF envelope design that alternates 
between airtight and open-air, according to 
the temperatures that are created with the 
cavity, winter cooling loads dropped by 50 
percent (in Phase 3). 

 The main design parameters of this study 
are: the thermal properties of the double-
skin envelope, the width of the double-skin 
cavity, and the natural ventilation potential 
of the cavity (airtight / open DSF); the 
researchers examined how these can be 
used in an optimal way for reducing the 
energy loads of a high-rise structure located 
in Tel Aviv. The above findings point out the 
importance of carefully detailing the 
building envelope during the initial design 
stages in order to improve the energy 
efficiency of the structure, based on the 
specific climatic conditions of its location. 

Unless otherwise noted, all image credits in this 
paper are to the authors. 
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Figure 8. Comparisons of hourly data of heating (H) and cooling (C) loads of the 0.2-meter-width DSF at 8.7 meters 
high, between 08:00 and 20:00 for 20 February, in scenario A: closed DSF, and scenario B: open/closed DSF, according 
to temperature highs within the cavity. 
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