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Abstract 
 
Along the subduction-zone of the western Japanese islands, large earthquakes will occur around the 
middle of this century and long-period ground motions will reach major urban areas, and shake high-rise 
buildings violently. Since some of old high-rise buildings were designed without considering long-period 
ground motions, reinforcing such buildings is an important issue.  
An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a 
problem with ordinary damper is that they require reinforcement of surrounding columns and girders to 
support large reaction forces generated during earthquake ground motion. To solve this problem, a 
deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce 
the damping force at the moment when the frame deformation comes close to its maximum value. 
Allowing this feature, reinforcement of columns, girders, and foundations are no longer required. 
The authors have applied seismic retrofitting with deformation-dependent oil damper to an existing 54-
story office building (Shinjuku Center Building) located at Shinjuku ward, Tokyo Metropolitan in 2009, to 
suppress vibration under the long period earthquake ground motions. The seismic responses were 
observed in the 2011 off the Pacific coast of Tohoku Earthquake and it is clarified that the damping ratio 
was higher and the response lower by 20% as compared to the building without dampers. 
 
Keywords:   
seismic retrofit, high-rise building, oil damper, long-period ground motions, the 2011 off the Pacific coast of 
Tohoku Earthquake 
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1. Transition of design ground motion and characteristics of long-period ground motions 
Figure 1 shows the pseudo velocity response spectra of design ground motions. Most of high-rise buildings 
before 2000 were designed considering only “three standard design waves”: EL CENTRO NS, TAFT EW and 
HACHINOHE NS. In these days, it is recognized that the three standard design waves are small in the 
period domain longer than 3 seconds. The building law revised in 2000 gives a design spectrum whose value 
(80 cm/s up to 10 seconds) is larger than the three standard design waves. In addition, recent researches 
point out that the long-period ground motions are amplified by the thick sedimentary layers of the major 
plains and they surpass the building law spectrum in long-period domain.  
The characteristic of long-period earthquake ground motions is that they travel long distance without being 
attenuated and have long duration. It is pointed out that existing high-rise buildings have a possibility to be 
stricken by two large earthquakes and more. Those conditions were not considered at the time when old 
buildings were constructed. The long duration and multiple strikes of large earthquakes make the cumulative 
damage exceed the capacity. Therefore, it is strongly required to reinforce the building to reduce the damage 
of structures and deformation of building. 

 
Figure 1. Velocity response spectra of design earthquake ground motions 

 
2. Deformation-dependent oil dampers 
Figure 2 illustrates the stress condition while the seismic force is acting a high-rise building. Oil dampers are 
installed with K-shape brace. One side is under tensile force and the other under compression force. 
Especially, the dampers near the foot of the building are under large tensile and compression forces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Stress condition while seismic force is acting 
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Ordinary dampers change the damping force depending on velocity. When the velocity of piston reaches a 
threshold value, the relief valve opens and the damping force is kept constant. A problem with ordinary 
dampers is that they require reinforcement of surrounding frame such as columns, beams, and foundations 
because reaction force is large when the frame deformation comes close to its maximum value. It is difficult 
to reinforce surrounding frame of an existing building. 
To solve this problem, a deformation-dependent oil-damper was developed as shown in Fig. 3. The damper 
has a one-way bypass route in addition to main valve (upper panel). When seismic force works on the 
damper and the deformation reaches the predetermined value, the one-way bypass opens and the damping 
force decreases (middle panel). When the piston goes back, the one-way bypass closes and the damper 
behaves as an ordinary damper (lower panel). Figure 4 shows the relationship of damping force and 
deformation for the ordinary damper and that of the deformation-dependent oil damper. The deformation-
dependent oil damper reduces the damping force at the moment when the frame deformation comes close to 
its maximum value. Therefore, no reinforcement of columns, beams, foundations is required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Mechanism of a deformation-dependent oil damper 

 
 
 
 

            
Ordinary oil damper                       Deformation-dependent oil damper 

Figure 4. Relationship of damping force and deformation for an ordinary damper  
and a deformation-dependent oil damper 
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3.4 Long-period earthquake ground motions 
3.4.1 Assumed South Kanto earthquake 
Assumed earthquake ground motions are synthesized by the empirical Green’s function method [Irikura, 
1986] at the period domain below 4 seconds and by the three dimensional finite difference method [Graves, 
1996] above 4 seconds. Adding those two results, a broadband synthetic ground motions are generated. 
Figure 13 shows the three components of the synthetic acceleration waveform of assumed South Kanto 
earthquake. Figure 14 shows the pseudo velocity response spectra (h=5%). 
 

        
 

 
 
 
3.4.2 Assumed Tokai earthquake 
Assumed earthquake ground motions are synthesized by the empirical Green’s function method in the period 
domain below 4 seconds and by the domain reduction method [Bielak et al, 2003] [Yoshimura et al, 2003] 
above 4 seconds. Adding those two results, a broadband synthetic ground motions are generated. Figure 15 
shows the three components of the synthetic acceleration waveform of assumed Tokai earthquake. Figure 16 
shows the pseudo velocity response spectra (h=5%). 
 

        
 

 

 

Figure 13. Acceleration waveforms of 
assumed South Kanto earthquake

Figure 14. Response spectra of assumed  
South Kanto earthquake (h=5%)

Figure 15. Acceleration waveforms of 
assumed Tokai earthquake 

Figure 16. Response spectra of assumed 
Tokai earthquake (h=5%) 
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3.5 Result of Dynamic Analysis 
Dynamic analysis is carried out under the condition such that 1st story column is fixed. Figure 17 shows the 
result of maximum deformation angle at each story and cumulative plastic deformation ratio of SBEAW steel 
bars of transverse direction before setting oil damper. For Tokai earthquake, the maximum deformation angle 
is less than 1/100 and cumulative plastic deformation ratio of SBEAW steel bars is also less than 135. 
However, for the south Kanto earthquake, the maximum deformation angle reaches 1/93 and cumulative 
plastic deformation ratio of SBEAW steel bars reaches 145, that violates the criteria shown in 3.2. 
Figure 18 shows comparison of responses with and without oil damper. We can see that after setting oil 
damper all the design criteria are satisfied, that is to say, the maximum deformation angle is 1/100 and the 
cumulative plastic deformation ratio of SBEAW steel bars is 110. 
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4 OBSERVATION RESULTS 
4.1 Outline of the 2011 off the Pacific Coast of Tohoku Earthquake 
The 2011 off the Pacific coast of Tohoku Earthquake occurred at 14:46 on March 11th 2011, epicenter 
located in Sanriku Sea with moment magnitude of 9.0. Figure 19 shows the velocity response spectra with 
h=5% and Figure 20 shows the energy spectra with h=10%, recorded at first floor of Shinjuku Center 
Building. The three standard design waves: EL CENTRO NS, TAFT EW and HACHINOHE NS, and the 
uniform design spectra regulated by building standard law (rare and extremely rare earthquake motion) are 
also plotted for comparison of the level of earthquake motion. The level of the earthquake motion in Shinjuku 
is in the middle between rare and extremely rare earthquake motion of the uniform design spectra regulated 
by building standard law. Proportion of the component with period less than 1 second is small and the 
component with long period (especially 2-3 seconds) is relatively large. 
 
 
 
 
 
 
 
 
 
 
Figure 19. Velocity response spectra of earthquake      Figure 20. Energy spectra of earthquake  

ground motions                                     ground motions 
 
4.2 Response of the Shinjuku Center Building 
Shinjuku Center Building has been recording earthquake motions since the completion of the building [Nii et 
al, 2011]. There are many earthquake records obtained since then, including recent the 2011 off the Pacific 
coast of Tohoku Earthquake. The maximum values recorded from the 2011 off the Pacific coast of Tohoku 
Earthquake are summarized in Table 3. Figure 21,22 and 23 respectively illustrates acclerogram and relative 
displacement motion between RF and 1F. As shown in the figures, the earthquake motion continued for long 
time and the building was shaking for longer than 10 minutes. 
The maximum acceleration of the top floor was 236.0Gal in 
the longitudinal direction (X) and the maximum 
displacement of the top floor was 54.2cm in the transverse 
direction (Y), the average story drift angle which is figured 
out by dividing the maximum displacement of the top floor 
by the height of the building was 1/399. Therefore it is 
evaluated that there are no damages on the main structure 
such as columns and girders. In the inspection of the 
dampers after the earthquake, no abnormality was reported 
such as scratch, corrosion, peeled of paint or oil leakages.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Observed acceleration waveform (longitudinal direction) 
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Table 3. Maximum observed responses 

 Longitudinal Transverse Longitudinal Transverse
(X) (Y) (X) (Y)

RF 236.0 161.3 49.4 54.2
28F 112.7 171.3 26.3 33.3
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Figure 22. Observed acceleration waveform (transverse direction) 
 
 

 

 

 

 

 
Figure 23. Relative displacement waveform between RF and 1F 

 
 
5 PERFORMANCE VERIFICATIONS 
5.1 Estimation of additional damping ratio with oil dampers 
To estimate the additional damping ratio with the dampers, the modal damping ratio of the building is 
identified using multi-input-multi-output ARX model method [Saito, 1998] from the seismic records obtained 
before / after installation of the dampers. Damping ratio from 1st to 3rd mode in each direction was evaluated 
by composing the single input (acceleration of the first floor) and second output (acceleration of the top floor 
and the 28th floor) ARX models.  
Figure 24 shows the damping ratio of 1st mode obtained from several earthquakes before / after installation 
of dampers and it is plotted against the amplitude of 1st modal accelerations. Table 4 shows the estimations 
of damping ratio of the 2004 Mid Niigata Prefecture Earthquake M=6.8 (before installation of damper) and 
the 2011 off the Pacific coast of Tohoku Earthquake (after installation of damper). From these figure and 
table, it is observed that there is an increase in the damping ratio after installation of the dampers. The 
damping ratios of the 1st mode for the longitudinal (x) direction and transverse (y) direction of the building 
were increased by these oil dampers about 0.3 and 1.4 percent, respectively. 
 
 
 

Table 4. Estimated modal damping ratios before 
 / after installation of the dampers 

 
 
 
 
 
 
 
 
 

 
Figure24. Relationship between amplitude of 1st modal acceleration and damping ratio of 1st mode 
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Period 
 T  (sec) without damper *1 with damper *2

1 5.4 1.55 1.89
2 1.8 0.77 2.67
3 1.0 1.92 2.29
1 6.5 1.26 2.72
2 2.0 1.57 2.88
3 1.0 1.99 2.51

*1: estimated from the 2004 Mid Niigata Prefecture Earthquake
*2: estimated from the 2011 off the Pacific coast of Tohoku Earthquake
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5.2 Observed and simulated response with / without oil damper 
The vibration control effect of this damper under the 2011 off the Pacific coast of Tohoku Earthquake was 
verified by simulation analysis. In this verification, transverse (y) direction was considered as more dampers 
installed and larger deformation was recorded in this direction. Lumped mass model with 52 stories (linear) 
was used for the analysis. Dynamic analysis is conducted by the mode superposition method to the 10th 
mode. For under the 3rd mode, the damping ratio which is identified from the seismic records obtained 
before / after installation of dampers (Table 4) is used. For over the 3rd mode, the damping ratios are 
constant. As an input earthquake ground motion, acceleration waveform recorded at first floor was used.  
Figure 25 shows the analysis results of maximum displacement and acceleration of each story with or 
without dampers. Figure 26 shows the simulated relative displacement in transverse (y) direction between 
RF and 1F and the simulated acceleration at the top floor with or without dampers. Figure 27 shows 
simulated and observed response waveform with damper in transverse (y) direction at the top floor. The 
maximum displacement at top floor was 76.4cm without the dampers and 60.8cm with the dampers (the 
actual observed result was 54.2cm). This indicates that the dampers reduced displacement by 20%. The 
maximum acceleration was 220.3 Gal without the dampers and 184.1 Gal with the dampers (the actual 
observed value was 161.3 Gal) and there is about 20% reduction. Consequently, the performance of the 
seismic retrofitting of the super high-rise building was confirmed and the analytical results were in good 
agreement with the observed record. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Comparison of observed and simulated maximum response of each story with / without dampers 

 
 
 
 
 
 
 
 
 

Figure 26. Comparison of simulated response waveform with/without dampers 
 
 
 
 
 
 
 
 
 

Figure 27. Comparison of simulated and observed response with dampers 
Conclusions 
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The authors have developed a deformation-dependent oil damper and applied to 54-storey super high-rise 
building to reduce the vibration induced long-period earthquake ground motion. The seismic responses were 
observed in the 2011 off the Pacific coast of Tohoku Earthquake and system identification using ARX model 
and simulation analyses were conducted to estimate the control performance of damper.  
It is clarified that the damping ratio was higher and the response lower by 20% as compared to the building 
without dampers, and the observed responses of the buildings are mostly well simulated, thereby confirming 
the performance of the seismic retrofitting of super high-rise building with damper. 
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