Title: Engineering China’s Skylines

Author: Dasui Wang, Chief Engineer, ECADI

Subjects: Architectural/Design
 Building Case Study

Publication Date: 2016

Original Publication: CTBUH Journal, 2016 Issue III

Paper Type: 1. Book chapter/Part chapter
 2. Journal paper
 3. Conference proceeding
 4. Unpublished conference paper
 5. Magazine article
 6. Unpublished

© Council on Tall Buildings and Urban Habitat / Dasui Wang
What do you consider to be your greatest accomplishment?
I don’t know that I can say I have a single great accomplishment, but I think of myself as walking along with the development of China. Specifically, the last 30 years have been a golden period of time in China’s development. I have been working at ECADI for 37 years, since 1979. In this period, my colleagues and I really did something for our country. We were lucky to have participated in building most of the important tall buildings in China. That is a source of great pride for me.

One of your groundbreaking works was the Oriental Pearl TV Tower in Shanghai (see Figure 1). Can you talk a little about how that project came to be?
The project is a truly original one for China. ECADI did all of the work independent of the transmission technology. We got the project in 1989, when I was the lead structural engineer. During that period, there were few communications with overseas professional architects. And we had never seen foreign TV towers to use as a reference. There were several TV towers under construction at Tianjin, Liaoning, Wuhan, and Beijing, but they were all smaller than the Oriental Pearl Tower.

So this was an unprecedented structure, meant to be not only a TV tower but a symbol and an observation tower. What accounted for the tripod-like, ball-and-stick design for which it is famous?
Originally it was created for broadcasting purposes. There was no cable TV back then; only high-frequency transmissions, which required height to cover all of the city’s territory. The location chosen was the geographic center of Shanghai.

The architects proposed the initial formal concept of “Oriental Pearl,” which was based

“Since the economic opening, China has benefited from foreign architecture techniques, and has closed the gap with the world. Now that we have the confidence to execute complex projects, we need to focus on originality in design and innovation.”
on Shanghai’s central position on China’s coastline and its role as the brightest city of eastern China. You can see the tower has six balls, which the Chinese call mingzhu (pearls). There is an ancient Chinese poem that refers to “big and small pearls falling into a jade plate.” We structural engineers made great efforts to realize this concept. In conclusion, the achievement of the Oriental Pearl Tower is owed to several architects and structural engineers, rather than the work of one person.

There were many proposals, and ECADI presented several of them. The former President Jiang Zemin, who was mayor of Shanghai in 1989, chose this proposal after consulting with the relevant experts’ opinions.

There is a painting in the China Art Museum, which features what appears to be Deng Xiaoping looking admiringly out a window at Oriental Pearl Tower. What is the story behind that?
Jiang showed Deng Xiaoping a model of the Oriental Pearl, which was highly praised by Deng.

It is impressive that this was at a time when Chinese architecture was not as open to international expertise as it is now. How was a feasible concept realized?
Most of the tall TV towers around the world consist of one single tube with cable-stayed supports. The Chinese don’t like the cable-stayed style. They like self-supporting towers. Since the design called for a big ball to be put up to 300 meters’ height to accommodate tourism needs, a single tube would not be strong enough to support it. To support the three vertical tubes and the ball, the inclined, triangulated tubes composed a stable structure. The structural concept is very clear.

It must be satisfying to see the tower remains popular to this day.
At the same time, considering that there are a large number of visitors – about five million a year – we need six elevators in those three tubes. Recently, the owner has requested more elevators to increase capacity, which is not easy. We are working on developing a feasible plan for them.
What interested you in structural engineering?
In my teenage period, unlike the students of today, I was happy in my pursuits without thinking of the pressure of college entrance examinations. I studied what interested me. I enjoyed doing sports and making models. I also studied engineering because of the demand for it China. They did not separate tall buildings out of building construction as a subject at that time. There was no distinction.

How did your career develop after university?
I worked on industrial buildings before I committed to structural design. The Socialist industrialization of China meant that most building tasks were factories. I gained experience in prefabricated structures at that time. I have been involved in tall buildings since 1980 or 1981.

The sheer volume of tall buildings in China is overwhelming. There is much creativity and much monotony. How do you balance the need for creativity and productivity/accommodation?
We have cooperated with foreign architects for many important tall buildings in China. In the process of cooperation, we not only transfer the concepts and master plan to construction drawings, but we also optimize and deepen the design in consideration of the situation in China.

Now the process seems more interwoven, which has to be good.
As a good example of this, Tianjin World Financial Center (see Figure 3), in which ECADI collaborated with SOM, is the world’s tallest building to be constructed of steel-plate shear walls. With such thin plates, we had to consider the tendency of steel to buckle as well as the need to deal with multi-directional forces. But it was a very flexible and efficient method, so the overall fitness of the design was increased. We worked on this with Tsinghua University and did some tests on the issues between shear wall stability and gravity load. That was in 2008. When the tower was ultimately built, SOM and ECADI presented our design on the annual conference of the American Society of Structural and Civil Engineers (ASCE). This project received the structural category Award of Excellence.

What would you want to pass on to the next generation of structural engineers?
I don’t think much of the elaborate division of the subjects in higher education. Architectural structure or road and bridge engineering could be integrated into one area of civil engineering because of the same basic knowledge of mathematics, mechanics, geotechnics, and seismic forces.

You would encourage the disciplines to interact more, and not to over-specialize? Schooling should emphasize big concepts. You can choose different aspects to pursue when entering your career. And anyway, people of high capability could do both at the same time. My role model – Professor Lin Tung Yen – who was a well-known bridge and high-rise building structural engineer, is an excellent example.

What is the biggest change you have seen over your career, how has that affected the shape of the skyline, and how do you feel about it?
My working platform is ECADI, which means I am not alone when facing those challenges. For something like the CCTV New Headquarters, I couldn’t evaluate it from an architectural aspect. But, it really brought great challenges in structural design. Two of my major assistants helped me with this, and they gained important experience from it. For particularly important projects, it is very helpful that the government ask experts to peer-review the project.

For this project, OMA, the architect, and Arup, the lead engineer, made a lot of contributions. However, there were still many practical problems for us to solve. For example, the huge eccentricity in the structure, the huge cantilever, and how to keep the floor flat when the cantilever was completed, how to manage the high-steel-ratio columns. It was an unforgettable accomplishment that we finally managed to complete the building within reasonable cost while ensuring safety. We felt very pleased.

While we are on the subject of extraordinary buildings like this, what do you think is “weird” architecture? How do you think discouraging it will affect the industry?
Since 1957, China has set up a development policy that emphasized appropriateness for use, low cost, and beauty when applicable. I agreed with this policy, since it helped show a way out of China’s economic backwardness. Of course, things have changed now.

When Rem Koolhaas spoke at the 2013 CTBUH Awards, accepting for CCTV as Best Tall Building Worldwide, he said, “This is a building that could only have been thought of in Europe and only built in China.” As China’s development has arrived at a certain stage, there is an awareness of the need to pursue aesthetics. However, some people would consider “strangeness” as “beauty,” even when the aesthetic level is not that high. This situation may depend on the preference of local leaders or developers sometimes. There was a period of time in which many “Strange” or even ugly buildings were built. But, I think that time has passed, and China has come to a more rational stage. The aesthetic level of our nation has improved now that developers and the government think it is not appropriate to spend too much to build those strange buildings. Now, China has come out with a modified development policy – “appropriate for use, low cost, green, and beautiful.” I would say that architectural development in China took a short detour before. But now, it is on the right path.