Designing a Supertall for the Venice of China

Dennis Poon, CTUBH Trustee / Vice Chairman, Thornton Tomasetti

潘子强, CTBUH董事, 董事会副主席, 宋腾添玛沙帝

Paul Fu, Principal, Thornton Tomasetti | 符国勇, 创始人, 宋腾添玛沙帝
Project Description

- Tallest building when built
- West of Jinji Lake in Suzhou CBD
- 137-story, 729m tall
- Total site area: ~ 16,573 m²
- Total GA: 498,795 m²
 - Above Ground: 375,453 m²
 - Basement: 123,342 m²
- Functions:
 - Tower: Office, Apartment, Hotel
 - Podium: Retail, Ballroom
 - Basement: Parking, MEP space

3D View- Courtesy of Gensler
Title: Tower Vertical Stacking: 9 Zones

- L1 (0.0 m) - Z1: Retail/Conference
- L11 (74 m) - Z2~Z3: Office
- L43 (+210.5 m) - Z4~Z7: Apartment
- L104 (+457.1 m) - Z8~Z9: Hotel
- L138 (+598 m) - Tower Crown
- (+729 m)
Tower Lateral system

Core-Outriggers-Mega Frame

- Concrete Composite Core
- Exterior Mega Frame:
 - (12) sloping Super columns
 - 5 Sets of Outrigger Trusses
 - 9 sets of Belt Trusses
Tower Lateral system

- Composite Core Wall
- Super Column
- Outrigger Truss
- Belt Truss
- Horizontal Bracing
Tower Lateral system

- Composite Core Wall
- Super Column
- Outrigger Truss
- Belt Truss

© Council on Tall Buildings and Urban Habitat
Tower Lateral system

Composite Concrete Core

- Zone 1 & 2:
 - 35m square, 4X4 cells

- Zone 3 to 5:
 - Cut corners

- Zone 6 to 8:
 - 20.2m square, 2X2 cells

- Zone 9: 20 X 14m Rectangle, 2X2 cells
Tower Lateral system

Composite Core Wall: Embedded Steel in Core
- Steel plate at bottom zones
- Steel column at corner and intersection
- Outrigger truss member in wall
Tower Lateral system

Super Column:

- 8 Middle Columns + 4 Corner Columns
- Max Size: 3.7m X 5.2 m
- Steel Reinforced Column (SRC)
 - Reduce Column Size
 - Enhance strength and stiffness
- Work with Outrigger Trusses to provide bending stiffness
Tower Lateral system

Outrigger Truss (ORT)

- 5 sets along building height
- 2-story tall
- Link Core Wall and Super Columns to provide bending stiffness
- Effective to control story drift to meet stringent code limit of 1/500
Tower Lateral system

Tower Perimeter Mega Frame

.Symbol: Super Columns
.Symbol: Belt Trusses
 - 9 sets along building height
 - Located at MEP/Refuge levels
 - 2-story tall
 - Serve as transfer truss to support gravity column with one zone
.Symbol: Provide Secondary Lateral Resisting system
.Symbol: Enhance structural redundancy
Tower floor system

- Composite Slab System
- Lighter Weight and no formwork
- Typical Floor: 125 mm thick composite slab
- Typical MEP/Refuge floor: 200 mm thick steel trussed formwork system

- Closed form deck

© Council on Tall Buildings and Urban Habitat
Tower Crown

- **Spire structure**: 729m
- **Quadra-pod structure**: 688.6m
- **TMD supporting structure**: 643.5m
- **Height from base**: 523.0m
Supplemental Damping System (SDS)

China Academy of Building Research (CABR) performed 3 types of wind tunnel test
- High-frequency Force-Balance (HFFB)
- High-frequency Pressure Integration (HFPI)
- Aeroelastic model

Max accelerations for 10-year wind exceed code limits (unit m/s^2)

<table>
<thead>
<tr>
<th>Test Model</th>
<th>EL.598m (Hotel)</th>
<th>EL.462.6m (Residential)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFFB</td>
<td>0.274</td>
<td>0.180</td>
</tr>
<tr>
<td>HFPI</td>
<td>0.267</td>
<td>0.177</td>
</tr>
<tr>
<td>Aero-elastic model</td>
<td>0.258</td>
<td>0.185</td>
</tr>
<tr>
<td>Code limit</td>
<td>0.25</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Supplemental Damping System (SDS) is required
Supplemental Damping System (SDS)

- Combined System to reduce space
 - ~600-ton Tuned Mass Damper (TMD)
 - ~600-ton Tuned Sloshing Damper (TSD)
Tower Analysis

- State of art Analysis Approaches
 - Linear spectrum analysis
 - Linear time-history analysis
 - Nonlinear dynamic time-history analysis

- Two different analysis software to cross check

- Performance-Based Design
 - Evaluate tower performance under 2475-year earthquake

- Progressive Collapse Analysis

- Abide by China Building codes

- Adopt specifications from international codes
Tower Analysis Result

Height/width Ratio:

Building Periods:
- T1 = 9.04 second

Story Drift Ratio:
- meet 1/500 code limit under 50-year wind and 63-year seismic load

<table>
<thead>
<tr>
<th>Component</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Translation</td>
<td>T1 = 9.04s</td>
</tr>
<tr>
<td>Y Translation</td>
<td>T2 = 8.73s</td>
</tr>
<tr>
<td>Z Torsion</td>
<td>T3 = 3.98s</td>
</tr>
</tbody>
</table>
Podium

- 8-Story Tall
- Separated from Tower by seismic joint
- Column free at ground floor
- Large column spacing at retail and ballroom levels
Podium

Structural System

- Three cores
- Composite columns next to expansion joint
- Mega trusses at top floors connecting between cores and composite columns
Podium

Gravity system

- Composite slab: 125 mm thick (60mm concrete + 65 mm deep closed form metal deck);
- Hanger supported by mega truss to cut the floor framing span
- Floor truss for long span area - Ballroom
Podium

FLOOR VIBRATION

- Potential floor vibration due to dancing activity
- Mitigation scheme
 - Increase structure stiffness
 - Add mass damper

Figure 12 - Mitigated floor response on Level 7 due to 100 dancers (higher density)
Figure 13 - Mitigated floor response due to 100 dancers in small ballroom
Concrete Frame System

- B3 & B4: flat slab with drop panel for packing function
- B1 & B2: one-way beam slab system @ MEP space
- Ground Floor: Two-way beam slab system for fire truck and landscaping
Geotechnical Conditions

<table>
<thead>
<tr>
<th>Soil Stratum Succession</th>
<th>Soil Stratum Name</th>
<th>Bottom of stratum Elevation (m)</th>
<th>Recommended foundation bearing capacity (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>Silty clay</td>
<td>-2.09~ -5.52</td>
<td>150</td>
</tr>
<tr>
<td>(5)</td>
<td>Sandy silt</td>
<td>-6.49~ -16.86</td>
<td>160</td>
</tr>
<tr>
<td>(6)</td>
<td>Silty clay</td>
<td>-17.60~ -31.20</td>
<td>100</td>
</tr>
<tr>
<td>(8) 1</td>
<td>Silty clay</td>
<td>-20.96~ -24.42</td>
<td>220</td>
</tr>
<tr>
<td>(8) 2</td>
<td>Silty clay with sandy silt</td>
<td>-28.82~ -33.69</td>
<td>180</td>
</tr>
<tr>
<td>(9)</td>
<td>Silty sand</td>
<td>-35.96~ -46.45</td>
<td>250</td>
</tr>
<tr>
<td>(10) 1</td>
<td>Silty clay</td>
<td>-49.72~ -61.87</td>
<td>160</td>
</tr>
<tr>
<td>(10) t</td>
<td>Silty sand</td>
<td>-53.83~ -60.44</td>
<td>220</td>
</tr>
<tr>
<td>(10) 2</td>
<td>Silty clay</td>
<td>-56.69~ -72.36</td>
<td>180</td>
</tr>
<tr>
<td>(11)</td>
<td>Sandy silt with silty clay</td>
<td>-66.88~ -72.36</td>
<td>280</td>
</tr>
<tr>
<td>(12) 1</td>
<td>Clay</td>
<td>-78.03~ -81.83</td>
<td>200</td>
</tr>
<tr>
<td>(12) 2</td>
<td>Silty clay</td>
<td>-85.26~ -89.57</td>
<td>280</td>
</tr>
<tr>
<td>(13) 1</td>
<td>Silty sand</td>
<td>-94.53~ -101.44</td>
<td>500</td>
</tr>
<tr>
<td>(13)m1</td>
<td>Silty clay</td>
<td>-89.42~ -97.16</td>
<td>260</td>
</tr>
<tr>
<td>(13)m2</td>
<td>Silty clay</td>
<td>-98.79~ -103.33</td>
<td>350</td>
</tr>
<tr>
<td>(13) 2</td>
<td>Fine sand</td>
<td>-141.82~ -146.98</td>
<td>650</td>
</tr>
</tbody>
</table>

Site Conditions

- ** Poor soft soil condition
- ** Layers of sands and clays alternate to at least 120m below grade
- ** Long bored pile required
- ** High Water Table
- 0.5m below grade
- ** Deep basement :~27m
- ** Tension piles are required
Foundation

Tower Area
- 1.1m diameter pile, 110m long, 75m effective, bearing layer 13-2
 - Capacity: 16000kN
- A staggered pattern pile layout instead of a simple grid pattern under core and super column area

Podium Core Area
- 1.1m diameter pile, 100m long, ~65m effective,
 - Capacity: 13000kN

Other Area
- Top-down Column: 1.1m diameter pile, 100m long, ~65m effective, capacity 13000kN
- Tension pile: 0.8m Dia.
 - Tension capacity: 2500kN
Green Building Consideration

- For two certification
 - LEED
 - China Green Star

- Structural engineer credits:
 - All concrete are pre-mixed concrete.
 - >60% of building materials are supplied within 500km of project site.
 - >80% of concrete: C50 and above
 - >80% of structural steel: Q345 & above
 - >80% of reinforcement: HRB400 & above
Conclusion

Goal: Achieve an efficient structure that integrates with Architecture

Tower: An “Core-Outriggers-Mega Frame” system that utilize MEP / Refuge levels to improve the structural efficiency

Podium: Unique long span structures supported on three cores with floors hanging from below

Foundation: Classic Pile-Supported Mat system to sustain the massive tower

3D View- Courtesy of Gensler
Project Design Team Credits

Client: Zhong Nan Construction
Architect: Gensler
Structural Engineer: Thornton Tomasetti Inc.
MEP Engineer: Parsons Brinckerhoff
Local Design Institute: Eastern China Architectural Design & Research Institute CO., LTD
Wind Engineering Consultant: China Academy of Building Research
Fire Safety Consultant: Rolf Jensen & Associate (RJA)
Poon, Dennis
Affiliation: Thornton Tomasetti Inc.
Street Address: 51 Madison Avenue
City: New York
State/County: NY
Zip/Postal Code: 10010
Country: United States of America
Email Address: DPoon@ThorntonTomasetti.com
Fax: 1.917.661.7801
Telephone: 1.917.661.7800
Website: http://www.thorntontomasetti.com/
Author

Zhu, Yi
Affiliation: Thornton Tomasetti Inc.
Street Address: 398 Han Kou Road,
Hang Sheng Building
City: Shanghai
State/County:
Zip/Postal Code: 200001
Country: People’s Republic of China
Email Address: YZhu@ThorntonTomasetti.com
Fax: 1.917.661.7801
Telephone: 011.86.21.6057.0902
Website: http://www.thorntontomasetti.com
Fu, Paul
Affiliation: Thornton Tomasetti Inc.
Street Address: 51 Madison Avenue
City: New York
State/County: NY
Zip/Postal Code: 10010
Country: United States of America
Email Address:
PFu@ThorntonTomasetti.com
Fax: 1.917.661.7801
Telephone: 1.917.661.7800
Website:
http://www.thorntontomasetti.com/
Ma, Zhenggui
Affiliation: Thornton Tomasetti Inc.
Street Address: 51 Madison Avenue
City: New York
State/County: NY
Zip/Postal Code: 10010
Country: United States of America
Email Address: zma@ThorntonTomasetti.com
Fax: 1.917.661.7801
Telephone: 1.917.661.7800
Website: http://www.thorntontomasetti.com/
Questions?