Energy-Efficient Elevator Solutions for High-Rise Buildings

Patrick Bass, Executive Vice President (执行副总裁), ThyssenKrupp (蒂森克虏伯)
ThyssenKrupp Elevator Technology
Elevating R&D!
Shanghai CTBUH
Patrick Bass
September 16th to 19th, 2014
Elevator Technology is one Growth Pillar of ThyssenKrupp

Urbanization

Globalization

Demography

Developing the future.
Technology is our Engine
Urbanization

By 2050 urban populations will account for 70%.

Development of city population

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>9.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By 2050 urban populations will account for 70%.
The 21st century is the first metropolitan century

- By 2025 existing floor space will almost double
- The equivalent of a 1-million people city is being built every day
- Since 2000 the number of high-rise buildings (650 feet and above) has tripled
- Over 180 buildings currently under construction are above 820 feet
Clear Trend Towards Tall Mixed-Use Buildings

High-rise products are a lever for additional business

© Council on Tall Buildings and Urban Habitat

CTBUH | ThyssenKrupp Elevator Technology
Patrick Bass | Shanghai | 2014/09/16-19
Efficient use of space?

Elevator footprint

Increasing loss of usable space

Building core [m²]

Building height

© Council on Tall Buildings and Urban Habitat
Innovation is What Drives Us

β 17 TWINS
β 11 Double-Decker

CMA Tower Riyadh, Saudi Arabia
A very old idea of elevator engineers

1907
Upper car traction drive elevator, lower car drum drive elevator

1931
One counter weight for two traction elevator
TWIN - A Revolution in Elevator Technology

Significant advantages

- Up to 30% reduction in space requirements
- Up to 30% lower energy consumption

Without TWIN

With TWIN

Up to 50% increased transport capacity
TWIN - A Revolution in Elevator Technology

- TWIN provides best traffic results, if there are two main access landings (lobby/reception, parking areas, subway, 2nd street level).

- TWIN is also satisfying, if pit depth allows diving down of the lower car during loading the upper car.

- Use of TWIN allows to switch off one of the cabins in time periods of low traffic demand. (The other cabin can for example parked at basement floors).

- The TWIN system should combined with at least one conventional elevator as a recommendation. This makes sure, that travel from the lowest to the top floor is possible at any times (e.g. handicapped persons, VIP, ...)

- Call assignment will operate automatically.
TWIN - A Revolution in Elevator Technology

Characteristics

- Two cars are arranged on top of each other in one shaft using the same guide rails.
- Both cars can move independently in the shaft and approach each other up to the distance of one landing (depending on the distance between floors).
- The cars can also travel in opposite directions, which means that the cars can travel towards each other!
- Each elevator has its own traction drive and counterweight.
- Each elevator has its own over speed governor.
- The suspension is installed 1:1 or 2:1, depending on speed and travel height.
- The call assignment is generally performed by the Destination Selection Control DSC, which assigns each call intelligently.
More demand for energy - better solutions required

Elevators consume up to 10% of buildings total energy wage

<table>
<thead>
<tr>
<th>Life cycle cost of a building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost 20%</td>
</tr>
<tr>
<td>Operation cost buildings 60%</td>
</tr>
<tr>
<td>Design & build</td>
</tr>
<tr>
<td>Demo lition</td>
</tr>
<tr>
<td>Cost 80%</td>
</tr>
<tr>
<td>Energy cost buildings 40%</td>
</tr>
</tbody>
</table>

Elevators consume up to 10% of buildings total energy wage.

- Buildings: 41%
- Transport: 28%
- Industry: 31%

Elevators consume up to 10% of buildings total energy wage.
Modernization: How much energy can you save? Where?

<table>
<thead>
<tr>
<th>Category</th>
<th>Energy Savings</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabs</td>
<td>90%</td>
<td>Lighting upgrades, light shutdown, LED lighting,…</td>
</tr>
<tr>
<td>Traction</td>
<td>65%</td>
<td>Motor controller, regenerative drives, roping configuration</td>
</tr>
<tr>
<td>Hydraulic</td>
<td>30%</td>
<td>Motor efficiency controllers, high performing fluids,…</td>
</tr>
<tr>
<td>Escalators</td>
<td>25%</td>
<td>Auto slow down, LED lighting,…</td>
</tr>
</tbody>
</table>

In Germany: ~60% energy consumption on standby
Comparison between TWIN versus Doubledeck with identical transportation demands and nearly the same “quality of service”. VDI 4707 ‡ both Systems „Energy Efficiency Classe A“
Market Drivers – LEED and LEED for Elevators

LEED
- Leadership in Energy and Environmental Design
- Developed by the USGBC in 2000
- Provides independent third-party verification that a building was designed and built using strategies aimed at achieving high performance in key areas
 - Sustainable Site Development
 - Water Savings
 - Energy Efficiency
 - Materials Selection
 - Indoor Environmental Quality

LEED for Elevators
- Energy Efficiency - allow projects to count our energy efficient products by providing an energy calculation they can include in their energy model
- Low Emitting Interiors
 - Provide documentation of our materials
 - Use low-emitting on-site wet applied products (Machine room paint, cab adhesives)
- Construction Waste Management – appropriate recycling of construction waste on site
- Innovation in Design
LCA and the TKE SiLCA Tool

- To identify alternatives for improvement
- To compare the potential environmental impact of different design alternatives, during the design process
- To measure the potential environmental impact of new developments
- To track the environmental performance of our products
- To communicate the environmental performance of our products

TKE experience in LCA

- Time and resource consuming
- Developed by external companies
- Non-comparable results
- To support LEED, energy reduction, sustainable and safe products

Our tool for LCA

- Fast and easy-to-use
- Adapted to non LCA experts
- Global

SiLCA Tool

Simplified LCA Tool for TKE elevators
TWIN Safety Concept

Comparisons to conventional elevator

Note: Measures avoiding collision - comparison between TWIN and conventional elevators

<table>
<thead>
<tr>
<th></th>
<th>Conventional Elevator</th>
<th>TWIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Speed</td>
<td>1. Emergency Stop</td>
<td>1. Emergency Stop</td>
</tr>
<tr>
<td></td>
<td>2. Buffer (often designed with reduced buffer stroke and speed monitoring)</td>
<td>2. Safety Gear (actively activated via rope brake, which will be tested each 24h – controlled by SIL3 controller acc. IEC 61508)</td>
</tr>
<tr>
<td>Over Speed</td>
<td>1. Speed Governor</td>
<td>1. Speed Governor</td>
</tr>
<tr>
<td></td>
<td>2. Safety Gear</td>
<td>2. Safety Gear</td>
</tr>
</tbody>
</table>
The 4-level Safety Chain

Level 1: Clearance relevant assignment of calls

Destination calls are assigned in a manner that the cars do not hinder each other and a minimum clearance is maintained at all times (by DSC).

Level 2: Monitoring of minimum clearances

While the cars approach each other less than a defined clearance, the speed is reduced so that an operational stop at next landing is possible at any time.

Level 3: Emergency stop

Electrical safety circuit is interrupted and the traction machines are stopped by activating the operating brakes.

Level 4: Triggering of safety gear operation

If there is no slowing down of the cars, the safety gears are engaged at both cars.

Cars will never touch!
Collision Prevention Safety Level 2

- Each elevator control receives signals of actual position, direction of travel, and speed of both cars. The remaining clearance is calculated with these data.

- If minimum clearance falls short, the speed for both cars will be decelerated and stop at the next landing.

- The minimum clearance depends on speed, which means that the minimum clearance increases with higher speeds.
TWIN - Our Security

Collision Prevention Safety Level 3 + 4

Level 3

- If level 2 does not result in a sufficient deceleration of the cars, activation of the operating brakes for the machines initiates an emergency stop.

- The initiation is effected by the electronic logic control system according to IEC/EN61508, which interrupts the electrical safety circuits of both elevators.

- The logic control systems work independently from the elevator controls Level 3 + 4

Safety level 3 + 4 will be monitored by an independing control system according to (IEC EN 61 508) the heighest safety classification of Safety Integrity Level 3 (SIL3)

- Relevant Systems will be used in case of safety functions for e.g. „fly by wire“ (Airbus, Boeing), automatic train systems and the chemical industry

- Certifications have been effected with Notified Body (TÜV Germany) successfully. The system has been approved and certificated.
TWIN – Our Security

Common Shaft Doors

- For TWIN we need to guarantee, one car being able to open the doors, without any influence to the other car.

- Under normal operating conditions the opening of one car/shaft door, should not interrupt the safety circuit of the other car.

- In case of TWIN the monitoring of the shaft doors, if closed or locked, is performed by an additional PES according to IEC/EN 61508 SIL3.

- Two safe potential free contacts are connected independently to the safety circuits of both elevator controls. These contacts indicate the status of the shaft doors and comply to a shaft door safety circuit like it is the case for usual elevators.
Test Towers to foster innovations

- High capacity - 15 test shafts
- High speed - test elevators at 18 m/s
- Test elevators out of the construction sites
- Located close to manufacturing site, R&D center and engineering universities

Rottweil, Germany
ZhongShan, China
Elevator Technology
Elevating R&D!

Thank you

© Council on Tall Buildings and Urban Habitat

Developing the future.