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Abstract

In this paper, the stability requirements for diagrid and mega braced structures are examined. The role of the secondary
bracing system for the stability of a diagrid structure is discussed. A simple procedure is proposed for the design of the
secondary bracing system when it is required. As a case study, the design of the Hearst Tower diagrid and its secondary bracing
system are presented.
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1. Introduction

Efficiencies in the strength and stability of truss sys-

tems have been understood since the Middle Ages. The

major impetus for widespread use of the truss system

however, came in the 19th century with its implementation

in bridge construction, early on in wood and eventually in

cast and wrought irons. This created a surge of inventive

truss configurations such as the Allen Lattice Truss, War-

ren Truss and Pratt Truss among many others. The truss

structures reached their most impressive height with the

construction of the Eiffel Tower in 1889.

The first diagrid structure was introduced by the brilli-

ant Russian engineer Vladimir Shukhov in the design of

the world's first hyperboloid diagrid structure in Nizhny

Novgorod, Russia in 1896. However, it took sixty years

after the introduction of the diagrid structure for the first

diagrid building, known as the IBM building in Pittsburg

to be constructed in 1963, (Curtis, 1963).

Another forty years passed before diagrid structures

became the focus of a new concept in architecture and

structural engineering, and for their aesthetic and intrinsic

structural value to be appreciated. The diagrid resurgence

was led by Foster and Partners Architects and their Struc-

tural Engineers in the design and construction of 30 St

Mary Axe (Swiss Re) in London, Hearst Tower in New

York, and The Bow in Calgary, (Boake, 2014; Rahimian

and Eilon, 2007). Since then many other diagrid buildings

have been proposed, designed and constructed, (Boake,

2014).

Similarly, the use of truss and mega bracing followed

its own trajectory after the construction of the Eiffel tower.

The John Hancock Center in Chicago, engineered by Faz-

lur Khan and constructed in 1969, was the first application

of mega bracing in tall buildings while the Bank of China

Tower (367 m) in Hong Kong reached new heights with

its impressive application of mega bracing in 1990, (Blake,

1991).

Diagrid and braced structures are both variants of truss

structures where the primary mode of load transfer is by

axial stress in which materials show their maximum effi-

ciency and economy in resisting forces. A structure with

mega bracing, whether in the form of a diagrid or indivi-

dual bracing, requires special design considerations as

relates to its stability. This is due to the fact that mega

bracing elements spanning over multiple floors may not

provide lateral support for the structure at each of the

floors that it passes through. The bracing elements provide

lateral stiffness as part of a truss system at their trian-

gulated “hard panel” nodes. At any other point along the

brace member the lateral stiffness would be a function of

the flexural stiffness of the bracing element acting as a

beam and not as a truss system. Therefore, depending on

the size and geometry of the diagonal elements they may

need to be laterally stabilized at other levels in addition to

the hard panel node levels. A procedure for the stability

design of the bracing is explained in this article. A Diag-

rid system does not meet the limitation of the Direct Ana-

lysis Method of AISC as it requires that “The structure

supports gravity loads primarily through nominally-verti-

cal columns, walls or frames.” However, the AISC Direct

Analysis method is examined here and it is demonstrated

that the method is not applicable for a diagrid system with

multistory elements.

2. Classifications

There are fundamentally two solutions for the stability

design of diagrid and mega bracing elements. One solu-

tion is to consider the full length of the bracing element
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between the hard panel nodes spanning over multi floors

as the un-braced length. This approach generally requires

large cross sectional dimensions relative to the span of the

element in order to provide adequate buckling capacity as

well as sufficient lateral stiffness to control the inter-story

building sway for the floors between the nodal floors.

The Bank of China and Swiss Rae tower are two extreme

example of this approach where the bracing elements and/

or the mega columns flexural stiffness provide adequate

rigidity to allow those elements to span between the hard

panel nodes, see Fig. 1. In this approach no secondary

bracing system is required.

The second approach considers the bracing elements to

be laterally supported at the levels away from the hard

panel nodes by a secondary bracing system (SBS). The

secondary bracing system itself will also be considered

laterally supported by the mega brace system at the hard

nodal levels. Hearst Tower is an example of this approach,

see Fig. 2.

This paper addresses the secondary bracing requirement

for the diagrid or mega brace system. The diagrid system

designed for Hearst Tower is used as an example.

3. Secondary Bracing System

3.1. Column Lateral Bracing

The lateral bracing of columns with intermediate lateral

supports as shown in Fig. 3 have been studied by Winters

and others based on equilibrium requirements of a column

Figure 1. Bank of China courtesy of Pei Cobb Freed &
partners.

Figure 2. Hearst Tower Courtesy of Foster and Partners.

Figure 3. Buckling modes of a multistory column with
lateral spring supports.
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under a laterally displaced position considering the so called

P-D effect, (Abdelrazaq et al., 1993; Galambos, 1998;

Geschwindner and Lepage, 2013; Montuori et al., 2014;

Salmon and Johnson, 1980; Winter, 1960; Yura, 1996).

The following equations show the stiffness and strength

requirements at the laterally braced nodes.

(1)

Where 1<β<4 is a parameter to account for the buckl-

ing mode shape as shown in Fig. 4, (Salmon and Johnson,

1980). The SBS stiffness Kx should attain the largest

possible value per Eq. (1).

The Δ0 is the initial column out of plumbness at the

bracing nodes. The term (1+Δ0/Δ) represents the amplifi-

cation effect of the construction imperfection. Winter sug-

gested considering Δ0=Δ as reflected below.

(2)

Eq. (3) shows the required strength of the SBS system.

(3)

The AISC Code of practice recommends considering a

construction tolerance of h/500 between the splice points,

(AISC 303, 2010). Eq. (4) shows the required strength of

the SBS system considering Δ0=h/500 as the construction

imperfection and considering that the amplified deforma-

tion is set at Δ0=Δ.

(4)

3.2. Stability of the Diagrid

By applying the same principal of equilibrium as discus-

sed above to the diagrid structure in Fig. 5 the following

stiffness requirements for SBS for the stability of the dia-

grid can be obtained. In formulating equilibrium it should

be considered that the diagrid axial force, while it is in a

vertical plane, is also inclined by an angle of α as shown

in Fig. 5. The required stiffness is a function of the mag-

nitude of the diagrid compression force. Eq. (5) shows the

required stiffness of SBS for each diagrid under the load

applied at the hard point of the diagrid as shown by Pu.

(5)

Where, Fu represents the axial force in the diagrid and

α is diagrid angle from the horizontal axis.

Considering a complete triangular diagrid as shown in

Fig. 5 the required SBS stiffness at each level can be writ-
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Figure 4. Required spring constant for stability of a multistory column, from Salmon and Johnson, 1980.

Figure 5. Buckling deformation shape of a single diagrid module.
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ten as;

(6)

Eqs. (7) and (8) show the required lateral stiffness and

strength for a series of interconnected diagrid systems

respectively.

(7)

(8)

Where, ΣPu is the sum of the vertical component of all

diagrid axial forces measured at a specific level.

Eq. (9) combines the stiffness requirements of Eqs. (2),

and (7) to account for the stability of the entire system at

a floor level located away from the diagrid hard panel

nodes.

(9)

Where, ΣPlu is the total vertical load of the leaning

columns at a specific level. The first term in Eq. (9) is for

the stability of the diagrid element in the plane of the dia-

grid, the second term is for the stability of the leaning col-

umns and the out of plane diagrids.

Likewise, the strength requirement for the SBS system

can be obtained similar to Eq. (10) as shown below by

combining the requirements of Eqs. (4), and (8).

(10)

4. Design of the Secondary Bracing System

For the design of the SBS system as described above,

the strength requirement from Eq. (10) can be converted

to a set of lateral forces to be applied to the SBS system.

For this purpose, the deformation shapes representing the

possible initial imperfection and buckling modes need to

be considered. The buckling mode shapes can be obtained

from an eigenvalue analysis of the diagrid structure with

representation for leaning elements and the secondary

bracing system. The eigenvalue analysis for buckling req-

uires incorporation of the geometric stiffness matrix. Al-

ternatively, for a system with identical “Nodal” bracing

(springs) or identical “Relative” bracing stiffness at all

levels the mode shapes can be assumed to follow a sine

wave, similar to an Euler buckling shape of a prismatic

column (Winter, 1960; Geschwindner and Lepage, 2013).

Subsequently, a geometric nonlinear (P-Delta) analysis

of the system can be performed for each of the buckling

modes. The profile of the mode shapes scaled to an AISC

construction tolerance of h/500 is considered as an initial

imperfection in order to obtain the lateral forces for the

stability of the system. A four story diagrid which has

three intermediate “flexible” levels would have three mo-

des of buckling.

The geometric nonlinear analysis can be performed either

using structural analysis software such as SAP or ETABS

or via a relatively simple computation based on Eqs. (9)

and (10) without incorporating the β factor, as the actual

β factor will be calculated internally through the stability

equilibrium analysis for each of the mode shapes.

The results of the analysis have been confirmed with

eigenvalue buckling analysis using SAP2000 and ETABS

15. The analyses also verified that the buckling mode

shapes for nodes at the floor levels can be idealized as a

sinusoidal curve when the SBS spring constants and the

floor heights are equal at all levels.

For computational simplicity the stiffness demand for

the SBS system in the preceding equations is represented

as series of independent nodal springs. In the actual des-

ign of structures the SBS system would be envisioned as

a moment frame, vertical truss or a wall system spanning

vertically between the hard panel node levels of the dia-

grid system. As a result, the actual stiffness effect of the

SBS system is referred to as “relative bracing”, since at

each level the lateral stiffness of the SBS will have inter-

dependency with the adjacent levels. In other words, the

stiffness matrix representing the SBS lateral stiffness will

have off-diagonal non-zero elements. Fig. 6(a) shows the

stiffness matrix for the lateral degrees of freedom of the

structure with nodal bracing for a structure as shown in

Fig. 3 while Fig. 6(b) shows the stiffness matrix for the

lateral degrees of freedom of the structure with relative

bracing for a structure as shown in Fig. 7. kij represents

the relative bracing stiffness at each level and its value is

½ of kii for a uniform system. The fundamental difference

between the nodal and relative bracing is the existence of

the off-diagonal stiffness elements kij. Further explanation

can be found in Geschwindner and Lepage, 2013.

Fig. 7 represents a vertical braced frame as the second-

ary bracing system. For the cases where the inter-story

stiffness of the SBS system is identical at all levels the

stiffness matrix and geometric stiffness matrix will bec-

ome proportional, (Zhang et al., 1993). As a result, for a

given relative (inter-story) stiffness all three lateral modes

of buckling will converge to one eigenvalue and therefore

to one buckling load, Pu. In this scenario the ideal relative

(inter-story) stiffness of the SBS system will be k=kij=

Pu/h. The stiffness k is the off-diagonal stiffness matrix

value and Pu is the total vertical load at a given level. As

discussed before, assuming that the structure lateral dis-

placement is equal to the initial imperfection (Δ=Δ0) the
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Figure 6. (a) Stiffness Matrix for Nodal Bracing, (b)
Stiffness Matrix for Relative Bracing.
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required inter-story stiffness will be K=2Pu/h.

The ideal floor stiffness of the SBS at each level, which

is also the diagonal stiffness matrix value, will be K=kii=

2kij=2Pu/h. Similarly, the required floor stiffness (Δ=Δ0)

will be K=4Pu/h.

All three modes of buckling are possibilities that should

be considered as part of the design of the secondary brac-

ing elements and their connections regardless of the type

of bracing; nodal or relative.

5. Case Study: Hearst Tower

As an example, the stability analysis of a four story mo-

dule of the diagrid structure of the Hearst Tower between

the 18th and 22nd floors is presented. Fig. 8 shows a four

story module representing the diagrids, interior columns

and secondary bracing arrangement used in the Hearst

Tower. Fig. 9 shows a 2D model of a diagrid at of the East

facade with representation for leaning columns and a lean-

ing orthogonal diagrid as well as the first line of second-

ary bracing truss representing the eastern half of the floor.

This study considers that the four story module supports

an additional 24 stories above. A total vertical load of

14,000k on the diagrids and 17,000k of vertical load on

the leaning columns and 10,000k of vertical load on the

leaning diagrids are considered to represent the load from

the floors above imposed on the eastern half of structure

at the 22nd floor. For simplicity the local floor loads at

levels 18 through 21st are ignored in this study. The P-Δ

equilibrium analysis as explained above is performed for

each mode of buckling for the loads explained above.

The required secondary bracing and strength for each

of the modes of buckling and the mode shape profiles are

shown in Table 1. The analysis is performed for both

nodal bracing and relative bracing methods. The mode

shapes in the table are numbered based on the period of

the sinusoidal curves, the single curvature being the lowest

mode. This also represents the lowest spring constant

values required for the buckling resistance. However, if

performing eigenvalue for a set of given spring constants

the order of buckling is reversed as the 3rd mode would

provide the lowest buckling load capacity. To obtain the

required strength qu as shown in Table 1 the mode shapes

are scaled to an AISC maximum inter-story tolerance of

h/500.

The last column in Table 1 called “Relative SBS” shows

the required lateral floor stiffness considering relative

bracing stiffness. This represents the kii (diagonal) values

in the stiffness matrix shown in Fig. 6(b). The relative

stiffness value kij is ½ of kii for a uniform system. The qu

strength requirements for each of the mode shapes shown

in Table 1 are also applicable for the relative bracing sys-

tem as well as the nodal bracing system.

Subsequently, the secondary truss system is designed to

satisfy the strength and stiffness requirements shown in

Figure 7. Buckling deformation shape of a secondary truss system.

Figure 8. Isometric view of a four story segment of the
diagrid structure of Hearst Tower.
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Table 1. The diagonals for the SBS system are designed

for each of the three sets of stability forces shown on

Table 1 in combination with gravity and other loads. These

can be applied as an additional set of loads for the design

of the SBS bracing elements.

While only a four story segment is studied here as an

example, the stability analysis for the project was expan-

ded to take into account the entire building structure.

Depending on the relative position of the SBS truss

within the building, the effect of the eccentricity of the

SBS system with respect to the center of gravity and stiff-

ness of the floor needs to be accounted for by performing

a 3D stability analysis. In addition, the floor diaphragm

needs to be designed to ensure adequate strength and

stiffness for load transfer between the SBS, the diagrid

structure, and the leaning systems.

Fig. 10 shows the lateral displacement of the structure

under the P-Δ effect and Fig. 11 shows the inter-story de-

formation obtained from the stability analysis as compa-

red to the criteria of h/500.

6. AISC Provisions

The direct analysis method recognizes that the stability

and out-of plumbness requirement can be, in principle,

addressed by adding a notional load for the design of the

elements, (AISC 360, 2010).

However, the AISC limits the application of the direct

analysis method to structures with nominally vertical col-

umns. Therefore, it precludes a diagrid structure. The fol-

lowing study explains the fundamental shortcomings of

the Direct Analysis Method and the notional load app-

roach for a diagrid structure.

The notional load prescribed by AISC is modeled after

the first mode of buckling of a free standing cantilever

structure for a homogeneous structural system such as a

moment frame or truss system. A homogenous system is

defined here as structural system that has a similar load

path at each floor in the transfer of lateral forces to the

floor below. The notional load, which is proportional to

the vertical load imposed at each level, will produce a

story shear that will pass through all elements of the lat-

eral system and impact all elements in a similar manner.

However, a multistory diagrid structure or a mega brace

system that is not connected at each level to the panel

nodes defies this principle since the notional load story

shear at the nodal panel level will be converted to a series

of diagrid axial forces with no flexural or shear effect at

Figure 9. A 2D diagram representing a four story segment of the diagrid structure, leaning structure and secondary
bracing system.

Table 1. Buckling mode shapes, stiffness and strength requirement for nodal and relative bracing

Mode 1 2 3
Nodal spring

1 2 3
Relative

SBS1 2 3

Level
Mode
shape

Mode
shape

Mode
shape

krqd
(k/in)

krqd
(k/in)

krqd
(k/in)

Qu (k) Qu (k) Qu (k)
krqd
(k/in)

22 0.00 0.00 0.00 -172 -172 -71

21 1.00 1.00 0.41 310 1060 1809 101 343 243 1060

20 1.41 0.00 -0.59 310 1060 1809 142 0 -343 1060

19 1.00 -1.00 0.41 310 1060 1809 101 -343 243 1060

18 0.00 0.00 0.00 -172 -172 -71
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levels between the panel nodes as illustrated in Fig. 12.

As a result neither the diagrid system nor the secondary

bracing system, SBS will be exposed to the cumulative

story shear effect of the notional load.

As an example, Table 2 shows the notional load for the

four story diagrid module as shown in Fig. 9. As can be

seen from Fig. 12 the notional load from floors above,

when it reaches the hard panel nodes of the diagrid, is

converted to a series of axial forces in the diagrid system.

As explained above, for simplicity of discussion the local

floor loads are ignored. As a result the notional load for

the local floor is also ignored as the magnitude of the load

is significantly smaller than the load from the floors above.

Per AISC provisions the sum of notional load applied at

the 22nd floor would be yi= 0.002*41,000= 82k. It should

be noted that the notional loads for floors 19, 20 and 21

even if they had been considered would have been about

yi=.002×1700=3.4 kips for a local floor load of 1700 kips.

In addition, as explained above the notional load story

shear at the nodal panel level will be converted to series of

axial forces in diagrids with no flexural or shear effect at

levels between the panel nodes (levels 19, 20 and 21).

Figure 10. Buckling modes of the diagrid structure.

Figure 11. Lateral deflection of the diagrid structure under initial imperfection and P-Δ effect.

Table 2. Notional load at hard panel node level

Level Applied Floor Load, k Vertical Force at each level, k Notional Load, k

22 41000 41000 82

21 0 41000 0

20 0 41000 0

19 0 41000 0

18 0 41000 0
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Therefore a comparison of the notional loads with the lat-

eral force obtained from the stability analysis indicates

that the notional load method does not adequately address

the stability requirement of a multistory diagrid system.

In addition, as explained above, the AISC limits the app-

lication of the direct analysis method to structures with

fairly vertical columns and as a result AISC does not rec-

ommend that the Direct Analysis Method be considered

for diagrid structures.
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