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Abstract 
 
Outrigger system is commonly used in resisting lateral loads induced by earthquakes and winds for high-
rise buildings. The structural form of outrigger system consists of a central core, exterior columns, and 
horizontal cantilever outriggers connecting the core to the exterior columns. This efficient structural system 
increases the lateral stiffness of the structure, thus ensuring the stability and serviceability of the structure. 
Recently, damped outrigger system incorporating passive fluid-viscous dampers installed between 
outriggers and exterior columns was introduced and its effectiveness in increasing structural damping was 
verified through the application of them to a high rise building in Philippine.  
This paper presents a newly developed semi-active outrigger damper system, in which exterior columns 
and horizontal cantilever outriggers are connected with a semi-active outrigger damper. The semi-active 
outrigger damper acts as an on-off locking device enabling the exterior columns and the outriggers to be 
engaged or disengaged through an appropriately designed control algorithm, Due to the necessity of 
controlling the device, the semi-active outrigger damper system consists of sensors and a controller. 
Numerical simulation results show that optimally selected switching between engagement and 
disengagement is shown to be effective in reducing structural responses. Performance test on a semi-
active outrigger damper was carried out to verify its applicability as an on-off locking device. The 
developed device showed a stable performance under a harmonic loading. 

 Keywords: Outrigger Damper System, Semi-active, On-off locking device, Controller 
 

 
1. Introduction 
An outrigger system is an efficient structural system in resisting lateral loads induced by earthquakes and 
winds for high-rise buildings. It consists of a central core, exterior columns, and horizontal cantilever 
outriggers and increases its lateral stiffness, thus ensuring the stability and serviceability of the structure.  
Recently, there’s an effort to increase structural stability and serviceability of an outrigger system by installing 
passive and semi-active dampers between outriggers and exterior columns. Jeremlah (2006) introduced an 
outrigger damping system in which passive viscous dampers are installed between outriggers and exterior 
columns. It was shown to be effective in reducing structural responses under impulse-like loads such as wind 
gusts. Smith and Willford (2008) applied an outrigger damping system to a high-rise building in Philippine 
and proved it to be cost-effective by decreasing the demand for high stiffness and strength of the structure. 
Wang et al. (2010) developed a controllable outrigger damping system in which the semi-active control 
devices, magnetorheological (MR) dampers, are used to improve the control performance of the system and 
investigated the effectiveness of clipped-optimal algorithms with different control targets. 
In this paper, a semi-active outrigger damper system in which the structural responses are controlled by 
changing the values of structural stiffness through an engagement and disengagement of a semi-active 
outrigger dampers installed between outriggers and exterior columns is proposed. The control performance 
of the proposed semi-active outrigger damper system is investigated numerically and the performance test 
on a newly developed semi-active outrigger damper is carried out to verify its applicability as a switching 
device.  
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in which ݔ௢ is the displacement of the structure, and ݉௢, ܿ௢, ݇௢, ݇௖ are the mass, damping, stiffness of the 
structure and stiffness of the exterior columns. The reference position ݔ௢௥ሺ௧ሻ  is required to provide a zero 
force position. The control force ݑ௤ሺ௧ሻ represents the force during the modes ON and OFF. The values of 
parameters are adopted from Jeremlah (2006) except for the damping ratio which is set to 0 % here. The 
control sampling period T is set to 0.1s and the fundamental period of the system is set to 5s. The forcing 
function adopted from Jeremlah (2006) represents two successive wind gusts as impulse-like loads of which 
periods are close to the fundamental period of the structure and is shown in Figure 4.  
 

 
Figure 4.. Forcing function for a semi-active outrigger damper system 

 
Numerical simulation results are shown in Figure 5 and Figure 6. It is shown that resetting control law 
outperforms on-off switching control law in reducing structural responses.  

 
 

Figure 5. Normalized displacement time histories for without control, on-off switching control law, and 
resetting control law 
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The performance test on the damper was carried out for three different cases: during the engagement, 
during the disengagement, during the switching between the engagement and disengagement. The control 
sampling period is set to 0.1s. To verify the relationship between the reaction force and initial pressures in 
the cylinders, four different initial pressures, 1 bar, 20 bar, 30 bar, and 50 bar were applied to the damper 
and corresponding reaction forces under linearly increasing loading displacement were measured. From 
Figure 8, it is shown that the reaction force reaches its maximum value more rapidly as initial pressure 
increases. The sinusoidal loading displacement with gradually increasing amplitude was applied to the 
damper. Figure 9 shows the reaction force time histories during the engagement and disengagement. Figure 
10 shows the reaction force time history during the switching between the engagement and disengagement. 
It is shown that the damper generates high reaction force during the engagement and low reaction force 
during the disengagement as we expected. Furthermore, during the switching between the engagement and 
disengagement, the damper can switch high reaction force to low reaction force in a very short time, which is 
the most required property for an on-off locking device.  
 

 

 
 

Figure 8. Reaction force time histories with four different initial pressures in the cylinders 
 

 
Figure 9. Reaction force time histories during the engagement and disengagement 
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Figure 10. The force time histories generated from actuators and a damper and corresponding switching 

signal time histories 
 
3. Conclusions 
A newly developed semi-active outrigger damper system is proposed here and studied numerically and 
experimentally. It is shown that the semi-active outrigger damper system with appropriately designed 
switching control algorithms outperforms conventional outrigger system in reducing structural responses. 
From the experimental results, the damper is shown to switch high reaction force to low reaction force in a 
very short time, which is the most required property for an on-off locking device.  
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