Title: State of Tall Timber 2022 Authors: Daniel Safarik, Director, Research and Thought Leadership, Council on Tall **Buildings and Urban Habitat** Jake Elbrecht, Research Associate, Council on Tall Buildings and Urban Habitat Will Miranda, Research Manager, Council on Tall Buildings and Urban Habitat Subjects: Architectural/Design **Building Materials/Products** Construction Keywords: Prefabrication Steel-Timber Hybrid Publication Date: 2022 Original Publication: CTBUH Journal 2022 Issue I Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Daniel Safarik; Jake Elbrecht; Will Miranda # State of Tall Timber 2022 ### Authors **Daniel Safarik,** Director, Research and Thought Leadership Jacob Elbrecht, Research Associate William Miranda, Research Manager Council on Tall Buildings and Urban Habitat (CTBUH) The Monroe Building 104 South Michigan Avenue, Suite 620 Chicago IL 60603 United States t: +1 312 283 5686 e: dsafarik@ctbuh.org ctbuh.org Daniel Safarik is director, research and thought leadership at CTBUH. His responsibilities include providing high-level directional oversight for the Council's research functions, data studies, topical publications, and dedicated tall building database. Additional responsibilities include the development of content for CTBUH publications, particularly the CTBUH Journal. Safarik interfaces directly with the CTBUH President to identify topics and areas in need of detailed exploration and research, then engages analysts, writing staff, and production/digital team members to execute projects using clear operational workflows. Jake Elbrecht is a research associate at CTBUH. In this role, Elbrecht provides experience both with mass timber structural systems as well as running life cycle analyses. His interest in low-carbon architecture has driven a desire to understand the intersection of cost and carbon in the built environment. Elbrecht is a 2020 graduate of Auburn University and holds a Master of Science in Architecture from Auburn's design-build program, Rural Studio. During his graduate studies, he worked with a team of three other students to test a novel alternative to conventional insulation and heating methods—the Breathing Wall—while utilizing mass timber building enclosures. William Miranda is the research manager for the CTBUH Headquarters office in Chicago. Previously a research assistant for CTBUH Research Office at the IUAV University of Venice, Italy, he has been involved with a number of CTBUH research activities, including "Creating Industry-Accepted Criteria for Measuring Tall Building Floor Area" sponsored by ArcelorMittal, "Study on the Properties of Composite Megacolumns" sponsored by ArcelorMittal, "A Study on Tall Building Damping Technologies" sponsored by Bouygues Construction, "Cyclone Glazing and Façade Resilience for the Asia-Pacific Region" sponsored by Trosifol, and "Green Living Technologies: What is Missing in the International Standards?" sponsored by Underwriters Laboratories. #### **Abstract** The past few years have seen tremendous interest in the development of mass timber buildings of increasing height, in urban settings, many of which are hybrid structures with other materials. This study identifies 84 mass timber buildings of eight floors or higher, currently completed or under construction around the world, with analysis by region, function, and structural type. The accumulated knowledge around these projects continues to grow, embracing proposed buildings, and will inform future inquiry for the tall building industry. The data collection is supported by, and related to, research projects currently being conducted by CTBUH, and the network of CTBUH member firms contributing data on their projects. Keywords: Carbon, High-Rise, Prefabrication, Steel-Timber Hybrid ### Introduction In 2017, the Council on Tall Buildings and Urban Habitat published "Tall Timber: A Global Audit" (CTBUH 2017). This three-page data study accounted for all 48 known mass-timber projects of seven stories or higher that had either been proposed, were under construction, or were completed. This paper and the accompanying data study (see Tall Buildings in Numbers, page 30) represent the momentum the masstimber movement has gained over the five years elapsed since the previous study, including the evolution of building codes to allow much higher mass-timber construction. There are now more than 200 mass timber buildings around the world of seven stories or higher, proposed, under construction, or completed, more than a four-fold increase. The tallest in the world is Mjøstårnet, Brumunddal, Norway (see Figure 1) at 85.3 meters and 18 floors, but this building is set to be eclipsed by Ascent, Milwaukee, USA, at 86.5 meters and 25 floors, upon the completion of the latter building in August 2022 (see Figure 2). ## Range of Dataset and Survey Methods The data in this study have been collected over nearly a decade of scholarship, ranging from papers published by CTBUH members in the CTBUH Journal, to volunteer research committees and conference presentations. More recently, CTBUH has undertaken several funded research projects exploring various aspects of mass timber as used in high-rises (see "CTBUH Mass Timber Research Projects," page 29). Virtually all timber projects that come to the attention of the Figure 1. Mjøstårnet, Brumunddal, Norway, is the current world's tallest timber building, at 85.3 meters and 18 floors. © Nina Rundsveen Figure 2. Ascent, Milwaukee, USA, 86.5 meters and 25 floors, is expected to become the world's new tallest timber building when it completes in August 2022. © C. D. Smith Construction Figure 3. Mass timber high-rise buildings worldwide, 8 stories and higher, grouped by project stage, as of February 2022. Total No. = 139. Figure 4. Mass timber high-rise buildings worldwide, built or under construction, 8 stories and higher, as of February 2022, grouped by function. Total No. = 84. CTBUH Research and Thought Leadership team, via news articles, organizational member interactions, planning submissions, academic publishing, and so on, are entered into a master database. To maintain a high level of confidence and consistency across the report, the researchers set a minimum height threshold of eight stories above grade. This yields a total of 139 buildings that are either proposed, under construction or completed (see Figure 3). Limiting the study to buildings under construction or completed reduces the dataset to 84 buildings of at least eight stories' height. The 40 tallest of this group are listed in Table 1. ## **Summary of Results** The results of the audit are presented in the following paragraphs, in categories that correlate to those used on the CTBUH Tall & Urban Database and in CTBUH annual "Year in Review" data studies. ## By Function The predominant functional use of masstimber high-rises globally has been residential/hotel, comprising 54 buildings, or 65 percent of the total. This is followed by office use, with 16 buildings (19 percent), mixed-use at 12 (14 percent) and institutional representing just 2 percent (see Figure 4). This correlates with mass timber's well-reported benefits. Many developers choose the material for its aesthetic appeal, exposing structure and paneling inside residential units or common areas. The cellular nature of the cross-laminated timber (CLT) panel systems also correlates strongly with the smaller rooms common to hotels and residential buildings. And the typical heights of multi-family housing in many parts of the world correlate to the maximum allowable building heights of mass timber structures per local fire codes. The biophilic benefits of timber also reinforce the value of exposing the material in commercial offices, which is expected to be a differentiating factor as companies compete to lure current workers back to the office and recruit new ones. This is driving a leasing premium for mass timber office buildings, whose numbers are expected to increase in the near future. ## By Region As the birthplace of mass timber technology, and home to mature managed forests and some of the most stringent environmental regulations in the world, it is unsurprising that Europe is the leader in terms of regions with the most high-rise timber buildings—some 71 percent of the total (see Figure 5). This is followed by North America, home to the world's largest managed forests and a long history of building with wood (if not mass timber), at 18 percent. Australia, with 10 percent of the total, has some of the world's best-known and earliest mass-timber high-rise buildings, including Forte, Melbourne, and 25 King, Brisbane (see Figure 5, and page 14), which is all the more remarkable, given that the nation has a CTBUH Journal | 2022 Issue I CTBUH Research | 23 | Rank | Building Name | City, Country | Height
(m) | Floor
Count | Structural System | Function | Status
(as of Feb 2022) | Completion
Year | |------|---------------------------------------|------------------------------|---------------|----------------|------------------------------|---------------|----------------------------|--------------------| | 1 | Ascent | Milwaukee, USA | 86.6 | 25 | Concrete-Timber Hybrid | Residential | Under Construction | 2022 | | 2 | Mjøstårnet | Brumunddal, Norway | 85.4 | 18 | All-Timber | Mixed-Use | Completed | 2019 | | 3 | НоНо | Vienna, Austria | 84.0 | 24 | Concrete-Timber Hybrid | Mixed-Use | Completed | 2020 | | 4 | Haut | Amsterdam, Netherlands | 73.0 | 22 | Concrete-Timber Hybrid | Residential | Under Construction | 2022 | | 5 | Sara Kulturhus | Skellefteå, Sweden | 72.8 | 19 | Steel-Timber Hybrid | Mixed-Use | Completed | 2021 | | 6 | De Karel Doorman | Rotterdam, Netherlands | 70.5 | 22 | Concrete-Steel-Timber Hybrid | Mixed-Use | Completed | 2012 | | 7 | 55 Southbank | Melbourne, Australia | 69.7 | 19 | Concrete-Steel-Timber Hybrid | Mixed-Use | Completed | 2020 | | = 8 | Roots Tower | Hamburg, Germany | 65.0* | 19 | Concrete-Timber Hybrid | Residential | Under Construction | 2023 | | = 8 | Wellington | Melbourne, Australia | 65.0* | 15 | Concrete-Timber Hybrid | Office | Under Construction | 2023 | | = 10 | Baufeld 1 Suurstoffi Abro | Risch-Rotkreuz, Switzerland | 60.0 | 15 | Concrete-Timber Hybrid | Mixed-Use | Completed | 2019 | | = 10 | Kromet | Gothenburg, Sweden | 60.0* | 15 | Concrete-Timber Hybrid | Mixed-Use | Under Construction | 2022 | | 12 | Brock Commons Tallwood House | Vancouver, Canada | 57.9 | 18 | Concrete-Timber Hybrid | Residential | Completed | 2017 | | 13 | Eunoia Junior College | Singapore, Singapore | 56.0 | 12 | Concrete-Timber Hybrid | Institutional | Completed | 2019 | | = 14 | Hyperion | Bordeaux, France | 55.0 | 16 | Concrete-Steel-Timber Hybrid | Residential | Completed | 2021 | | = 14 | Rundeskogen Hus B | Sandnes, Norway | 55.0* | 16 | Concrete-Timber Hybrid | Residential | Completed | 2013 | | 16 | Albizzia | Lyon, France | 53.0 | 17 | Concrete-Timber Hybrid | Mixed-Use | Under Construction | 2023 | | 17 | Ngytan Koriayo Geelong Civic Precinct | Greater Geelong, Australia | 52.0* | 12 | Concrete-Timber Hybrid | Office | Under Construction | 2022 | | 18 | 503 on Tenth | Portland, USA | 50.0 | 10 | All-Timber | Office | Under Construction | 2023 | | 19 | Treet | Bergen, Norway | 49.0 | 14 | All-Timber | Residential | Completed | 2015 | | 20 | Lighthouse Joensuu | Joensuu, Finland | 48.0 | 14 | Steel-Timber Hybrid | Residential | Completed | 2019 | | 21 | 25 King | Brisbane, Australia | 46.8 | 11 | All-Timber | Office | Completed | 2018 | | 22 | 2150 Keith Drive | Vancouver, Canada | 45.0 | 10 | Concrete-Timber Hybrid | Office | Under Construction | 2022 | | = 23 | Cederhusen | Stockholm, Sweden | 44.0* | 13 | All-Timber | Residential | Under Construction | 2023 | | = 23 | Hoas Tuuliniitty | Espoo, Finland | 44.0* | 13 | All-Timber | Residential | Completed | 2021 | | = 23 | Palazzo Nice Meridia | Nice, France | 44.0* | 10 | Concrete-Timber Hybrid | Office | Completed | 2019 | | 26 | T3 Bayside | Toronto, Canada | 42.0 | 10 | All-Timber | Office | Under Construction | 2023 | | 27 | Tallwood 1 at District 56 | Langford, Canada | 41.6 | 12 | Steel-Timber Hybrid | Residential | Under Construction | 2022 | | 28 | Origine | Quebec, Canada | 40.9 | 13 | All-Timber | Residential | Completed | 2017 | | 29 | T3 Sterling Road Building 5A | Toronto, Canada | 39.8 | 8 | Steel-Timber Hybrid | Office | Under Construction | 2023 | | 30 | INTRO Residential Tower | Cleveland, USA | 39.6 | 9 | Concrete-Timber Hybrid | Mixed-Use | Under Construction | 2022 | | 31 | 77 Wade | Toronto, Canada | 38.2 | 8 | Concrete-Steel-Timber Hybrid | Office | Under Construction | 2022 | | 32 | Sensations | Strasbourg, France | 38.0 | 11 | All-Timber | Mixed-Use | Completed | 2018 | | = 33 | Monterey | Brisbane, Australia | 37.0 | 11 | Concrete-Steel-Timber Hybrid | Residential | Under Construction | 2022 | | = 33 | Rundeskogen Hus C | Sandnes, Norway | 37.0* | 11 | Concrete-Timber Hybrid | Residential | Completed | 2013 | | 35 | Trafalgar Place | London, UK | 36.3 | 10 | All-Timber | Residential | Completed | 2015 | | = 36 | Aveo Bella Vista | Sydney, Australia | 36.0 | 11 | Concrete-Timber Hybrid | Residential | Completed | 2018 | | = 36 | Suurstoffi 22 | Risch-Rotkreuz, Switzerland | 36.0 | 10 | Concrete-Timber Hybrid | Office | Completed | 2018 | | = 38 | Green Office Enjoy | Paris, France | 35.0* | 8 | Concrete-Steel-Timber Hybrid | Office | Completed | 2018 | | = 38 | Opalia | Saint-Ouen-sur-Seine, France | 35.0* | 8 | Concrete-Steel-Timber Hybrid | Office | Completed | 2017 | | = 38 | Pont de Flandres Batiment 007 | Paris, France | 35.0* | 8 | Concrete-Steel-Timber Hybrid | Office | Completed | 2019 | | = 38 | Wood and Innovation Design Centre | Prince George, Canada | 35.0* | 8 | All-Timber | Office | Completed | 2014 | Table 1. The tallest 40 mass timber buildings worldwide, completed or under construction, as of February 2022. Please note that heights marked with an (*) are estimated, based on the floor count of the building. The estimate has been arrived at by analyzing thousands of other buildings of the same function on the CTBUH database that do have confirmed heights. See height calculator at skyscrapercenter.com/height-calculator. For the full list of 84 mass timber buildings, eight stories and higher, go to ctbuh.org/mass-timber-buildings. relatively small timber industry. Most materials are shipped tens of thousands of kilometers overseas from Europe. Asia brings up the rear with only two buildings in the dataset, though this can be expected to grow significantly in coming years. # By Structural Material It was equally important to define the structural materials used in each of the buildings in the audit. The major categories are defined as All-Timber, Concrete-Timber Hybrid, Steel-Timber Hybrid, and Concrete-Steel-Timber Hybrid structures. In Figure 6, the pie chart illustrates the breakdown of the dataset, grouped by structural material combination. • All-Timber Structures To qualify as an "all-timber" structure, both the main vertical and lateral structural elements must be constructed from timber. An "all-timber" structure may include the use of localized non-timber connections between timber elements. A building of timber construction with a floor system of concrete planks, or concrete slab on top of timber beams, is still considered a "timber" structure, as the concrete elements are not acting as the primary structure (CTBUH 2019). A well-known example is Treet, Bergen, Norway (see Figure 7). - Concrete-Timber Hybrid Structures In these buildings, a significant element of the vertical or lateral load-bearing system is made of concrete, often presented as a concrete core supporting a timber frame. Other commonly seen examples include buildings that use lateral spanning elements, such as beams, and vertical load bearing columns made of concrete, with timber serving as the main floor decking system. Several of the factoryprefabricated systems on the market integrate concrete frames with timber inlay panels for walls or flooring, or timber-framed modules with pre-poured concrete flooring. The current tallest concrete-timber hybrid building is HoHo, Vienna, Austria, at 84 meters and 24 floors (see Figure 8). - Steel-Timber Hybrid Structures In buildings with timber-steel hybrid structures, a significant element of the vertical or lateral load-bearing system is made of steel. Most typically, this will be a lateral force resisting system such as steel-framed cores, buckling-restrained braces, perimeter-frame or exoskeleton all-timber building in the world currently, standing at 49 meters and 14 floors. © Sparrow (cc by-sa) Figure 5. Mass timber high-rise buildings worldwide, 8 stories and higher, built or under construction, as of February 2022, grouped by region. Total No. = 84. Figure 6. Mass timber high-rise buildings worldwide, 8 stories and higher, built or under construction, as of February 2022, grouped by structural type. Total No. = 84. Figure 8. HoHo, Vienna, Austria (84 meters, 24 floors), completed in 2018, is the world's current tallest concrete-timber hybrid building. © DERFRITZ - Fotograf (cc by-sa) CTBUH Journal | 2022 Issue I CTBUH Research | 25 Figure 9. Sara Kulturhus, Skellefteå, Sweden (73 meters, 19 floors), is the world's current tallest steel-timber hybrid building. © White Arkitekter / Åke Eson Lindman Figure 10. De Karel Doorman, Rotterdam, Netherlands (70.5 meters, 22 floors), is the world's current tallest concrete-steel-timber hybrid structure. The design approach was chosen to facilitate a new residential tower atop an existing 1948 department store. © Fred Romero (cc by-sa) steel bracing systems and a gravity system composed of columns and beams that interact with a timber floor or wall system. Generally, this structural classification is meant to reflect a substantial use of steel, beyond the fasteners and connectors used in typical mass timber and wood-frame construction. The current tallest steel-timber hybrid building is Sara Kulturhus, a mixed-use building in Skellefteå, Sweden (see Figure 9). Concrete-Steel-Timber Hybrid Structures These buildings use a combination of all three materials to carry primary loads. The most typical combination would be a concrete core working in tandem with steel beams and columns, with timber flooring and partition walls, but many variations exist. The current tallest concrete-steel-timber hybrid building is De Karel Doorman, Rotterdam, Netherlands, at 71 meters and 22 floors—the majority of which are included in a lightweight hybrid tower constructed on top of an existing 1951 department store (see Figure 10). In terms of the structural material combinations identified previously, some interesting patterns emerge. The largest group of the buildings, 37 of the 84 in the eight-story-and-higher range, have an all-timber structure, followed by timberconcrete, timber-steel-concrete and timber-steel hybrids. On its face, this can seem surprising, because it is generally assumed that the flexural tendencies and light weight of timber relative to other materials would be an inhibitor to height, and that some kind of hybrid or composite structure would be necessary to achieve greater heights. A breakdown of the distribution of the various structural material combinations is shown in Figure 11. Figure 11. Distribution of mass timber buildings, eight stories and higher, worldwide, by number of floors and structural material combination. Data is accurate as of February 2022. | Structural Material | No. of Buildings | Framing Type | No. of Buildings | % Buildings per
Framing Type | | |----------------------------------|------------------|-------------------|------------------|---------------------------------|--| | | 37 | Load-Bearing Wall | 26 | 30.9% | | | All-Timber | | Post and Beam | 8 | 9.5% | | | | | Preassembled | 3 | 3.6% | | | | 30 | Load-Bearing Wall | 8 | 9.5% | | | Concrete-Timber
Hybrid | | Post and Beam | 18 | 21.4% | | | Tiyona | | Preassembled | 4 | 4.8% | | | | 10 | Load-Bearing Wall | 1 | 1.2% | | | Concrete-Steel-
Timber Hybrid | | Post and Beam | 9 | 10.7% | | | Timber Hybrid | | Preassembled | 0 | 0% | | | | 7 | Load-Bearing Wall | 3 | 3.6% | | | Steel-Timber Hybrid | | Post and Beam | 3 | 3.6% | | | | | Preassembled | 1 | 1.2% | | | Total | | | 84 | 100% | | Table 2. Distribution of framing types across structural material combinations, under-construction, or completed mass timber buildings, eight stories and higher, worldwide as of February 2022. # Structural Material Combinations by Framing Type Each of the four structural material combinations can be further broken down into three framing types, based on whether loads are distributed through walls, a post-and-beam system, or a modular system composed of prefabricated units. As the highly versatile CLT panel is very commonly used in mass timber construction generally, it is perhaps unsurprising that, of the 39 all-timber structures of eight stories or higher, 26 are load-bearing wall systems. A total of 30.9 percent of all the projects in the dataset are all-timber load-bearing wall systems (see Table 2). The second-most common framing type is the post-and-beam system, representing 21.4 percent of the timber-concrete hybrid systems, 90 percent of the timber-steel-concrete hybrid systems. In all, 16.7 percent of the dataset consists of timber-concrete hybrid systems with post-and-beam framing. ## **Cross-Comparisons by Region** Some illuminating comparisons can be made across the modes of analysis cited above, illustrating the somewhat different development of high-rise mass timber in regional markets. Europe has the greatest number of completed projects (54), with a further 22 proposed. In North America, there are far more proposed and under construction projects (26 and nine, respectively) than completed (six). In Australia, there are five proposed, three under construction, and five completed buildings of eight stories and higher. In Asia, there are two 66A total of 31 percent of all the buildings in the 84-building dataset are all-timber loadbearing wall systems. 99 CTBUH Journal | 2022 Issue I CTBUH Research | 27 completed buildings, only one proposed, and none currently under construction. There is no mass-timber construction activity to speak of in Africa or South America (see Figure 12). In Figure 12, the statistics generally reflect the maturity of the market in each region, as the technology for mass timber originated in Austria in the 1990s and spread throughout Europe, with a few pioneering projects of note in Australia in the first decade of the 2000s, followed by North America, and most recently Asia. With respect to materials used in the primary structure, the same pattern holds. Europe has the greatest number (29) and proportion (49 percent) of all-timber structures, while North America comes out quite evenly between all-timber, timber-concrete, and timber-steel solutions (see Tall Buildings in Numbers, page 30). Each individual project will have its own set of circumstances that dictate the most economical and practical choice of materials, subject to the economics of steel, timber and concrete in each city, let alone region. But some generalizations can be made. The prevalence of all-timber structures in Europe may be partly due to the proximity of timber forests to project sites; environmental objectives, such as demonstrating adherence to carbon footprint-reduction goals; or a preponderance of projects near the lower end of the height range studied. The higher proportion of steel-timber hybrid structures in North America may be partly reflective of the flexibility and performance of steel under seismic conditions, which prevail in areas that also have a significant timber economy, such as the Pacific Northwest in the United States and British Columbia in Canada. The lower number of projects in Australia should raise caution around making sweeping generalizations, but it is # Regional Distribution of Tall Mass Timber Buildings Figure 12. Left column: number of proposed, complete or under construction mass timber buildings, 8 stories or higher, per region. Right column: structural composition of complete or under-construction buildings, 8 stories or higher, per region. remarkable that the largest group is all-timber structures, when considering that nearly all timber used for construction is imported. ### What's Next The near future of high-rise mass timber appears bright. Worldwide, there are currently 70 buildings of eight stories or greater that are under construction or proposed. Many are in cities that already contain at least one tall timber building and are in countries with an existing tall timber economy, but many are also new. And it does appear that new height thresholds will be broken, going beyond the 25-story (circa 90-meter height) currently. These projects will likely only achieve these lofty goals by taking advantage of timber hybrid construction, in conjunction with steel and concrete. It is for this reason that CTBUH is conducting the research project "The Future Potential of Steel-Timber Hybrid Buildings", (see inset below) including 66 The higher proportion of steel-timber hybrid structures in North America may be partly reflective of the flexibility and performance of steel under seismic conditions, which prevail in areas that also have a significant timber economy. 99 convening a research conference on the same at Illinois Institute of Technology in May 2022 (see advertisement on page 7 or visit ctbuhsteeltimber.com). The optimal interaction of timber with these materials is essential to achieving several critical outcomes: reduced carbon footprint, improved construction efficiency and faster production of much-needed accommodation for the world's rapidly urbanizing population. Unless otherwise noted, all image credits in this paper are to CTBUH. #### References Council on Tall Buildings and Urban Habitat (CTBUH). (2017). "Tall Buildings in Numbers: Tall Timber, a Global Audit." *CTBUH Journal* 2017 Issue II. Chicago: Council on Tall Buildings and Urban Habitat. Council on Tall Buildings and Urban Habitat (CTBUH). (2019). "Tall Building Criteria." Accessed February 2022. Council on Tall Buildings and Urban Habitat. # **CTBUH Timber Research Projects** The accumulation of data in this report is the result of the following research projects undertaken by CTBUH. Timber Rising: Mass Timber Engagement Program Project years: 2019–2020 Funder: USDA Forest Service Principal Investigators: Daniel Safarik & Will Miranda ctbuh.org/timber-rising Future Timber City: An Awareness and Educational Program for Future, Sustainable, Dense Cities Project years: 2020-2022 Funders: USDA Forest Service & Binational Softwood Lumber Council (BSLC) Principal Investigators: Antony Wood, Will Miranda & Daniel Safarik ctbuh.org/future-timber-city The Future Potential of Steel-Timber Hybrid Buildings Project years: 2021–2023 Funders: constructsteel & Softwood Lumber Board (SLB) Principal Investigators: Antony Wood, Daniel Safarik & Jake Elbrecht ctbuh.org/steel-timber-hybrid